Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 75 | 2 |
Tytuł artykułu

Molecular pathogenesis, experimental therapy and genetic counseling in hereditary sensory neuropathies

Warianty tytułu
Języki publikacji
Hereditary sensory and autonomic neuropathies (HSANs) represent a group of heritable peripheral nerve disorders usually taking a severe clinical course. HSAN-affected patients manifest with deep, poorly-healing ulcerations of the feet and hands. To date no definitive cure for HSANs has been developed and the molecular pathology of these disorders is complex. The aim of this review is therefore to present recent findings-in terms of HSAN molecular pathogenesis. So far, mutations in 12 genes coding for different proteins have been reported in association with HSAN and the molecular pathogenesis has been elucidated in HSANla, HSAN4 and HSAN5. The genes involved in molecular pathogenesis of HSAN code for a wide spectrum of proteins from enzymes to specific nerve growth factors. As far as HSANla is concerned, the enhanced understanding has given rise to achievements in experimental therapy particularly in respect to disease models. Despite a rapid progress in studies on the molecular background of HSAN, numerous loci and genes remain still to be discovered.
Opis fizyczny
  • Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68: 753-758.
  • Apfel SC (2002) Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 50: 393-413.
  • Auer-Grumbach M (2008) Hereditary sensory neuropathy type I. Orphanet J Rare Dis 3: 7.
  • Auer-Grumbach M (2013) Hereditary sensory and auto¬nomic neuropathies. Handb Clin Neurol 115: 89-906.
  • Auer- Grumbach M, De Jonghe P, Verhoeven K, Timmerman V, Wagner K, Härtung HP, Nicholson GA (2003) Autosomal dominant inherited neuropathies with promi¬nent sensory loss and mutilations: a review. Arch Neurol 60: 329-334.
  • Auer-Grumbach M, Bode H, Pieber TR, Schabhüttl M, Fischer D, Seidl R, Graf E, Wieland T, Schuh R, Vacariu G, Grill F, Timmerman V, Strom TM, Hornemann T (2013) Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic pheno- type. Eur J Med Genet 56: 266-269.
  • Axelrod FB (2004) Familial dysautonomia. Muscle Nerve 29: 352-363.
  • Axelrod FB, Gold-von Simson G (2007) Hereditary sensory and autonomic neuropathies: types II, III, and IV Orphanet J Rare Dis 2: 39.
  • Axelrod FB, Liebes L, Gold-Von Simson G, Mendoza S, Mull J, Leyne M, Norcliffe-Kaufmann L, Kaufmann H, Slaugenhaupt SA (2011) Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia. Pediatr Res 70: 480-483.
  • Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P, Wu L, de Jong P, Brown RH Jr. (2001) SPTLC1 is mutated in hered¬itary sensory neuropathy, type 1. Nat Genet 27: 261-262.
  • Bercier V, Brustein E, Liao M, Dion PA, Lafreniere RG, Rouleau GA, Drapeau P (2013) WNK1/HSN2 mutation in human peripheral neuropathy deregulates KCC2 expression and posterior lateral line development in zebrafish (Danio rerio). PLoS Genet 9: e1003124.
  • Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin- evoked depolarization requires the sodium channel Na(V)1.9. Nature 419: 687-693.
  • Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M (2006) Mutation in the epsilon subunit of the cytosolic chaperonincontaining t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med. Genet 43: 4410-4443.
  • Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M (1992) The small GTPase rab5 func¬tions as a regulatory factor in the early endocytic path¬way. Cell 70: 715-728.
  • Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11: 467-480.
  • Carvalho OP, Thornton GK, Hertecant J, Houlden H, Nicholas AK, Cox JJ, Rielly M, Al-Gazali L, Woods CG (2011) A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J Med Genet 48: 131-135.
  • Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP bind¬ing proteins to exocytic and endocytic compartments. Cell 62: 317-329.
  • Chen S, Novick P, Ferro-Novick S (2013) ER structure and function. Curr Opin Cell Biol 25: 428-433.
  • Cherry S, Jin EJ, Ozel MN, Lu Z, Agi E, Wang D, Jung WH, Epstein D, Meinertzhagen IA, Chan CC, Hiesinger PR (2013) Charcot-Marie-Tooth 2B mutations in rab7 cause dosage-dependent neurodegeneration due to partial loss of function. Elife 2: e01064.
  • Cogli L, Piro F, Bucci C (2009) Rab7 and the CMT2B dis¬ease. Biochem Soc Trans 37: 1027-1031.
  • Cogli L, Progida C, Lecci R, Bramato R, Krüttgen A, Bucci C (2010) CMT2B-associated Rab7 mutants inhibit neu- rite outgrowth. Acta Neuropathol 120: 491-501.
  • Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts- Meek S, Armanini MP, Ling LH, McMahon SB, Shelton DL, Levinson AD (1994) Mice lacking nerve growth fac¬tor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001-1011.
  • Cuajungco MP, Leyne M, Mull J, Gill SP, Gusella JF, Slaugenhaupt SA (2001) Cloning, characterization, and genomic structure of the mouse Ikbkap gene. DNA Cell Biol_20: 579-586.
  • Davidson G, Murphy S, Polke J, Laura M, Salih M, Muntoni F, Blake J, Brandner S, Davies N, Horvath R, Price S, Donaghy M, Roberts M, Foulds N, Ramdharry G, Soler D, Lunn M, Manji H, Davis M, Houlden H, Reilly M (2012) Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J Neurol 259: 1673-85.
  • Delaloy C, Hadchouel J, Imbert-Teboul M, Clemessy M, Houot AM, Jeunemaitre X (2006) Cardiovascular expres¬sion of the mouse WNK1 gene during development and adulthood revealed by a BAC reporter assay. Am J Pathol 169: 105-118.
  • Dietrich P, Yue J, E S, Dragatsis I (2011) Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 6: e27015.
  • Dietrich P, Alli S, Shanmugasundaram R, Dragatsis I (2012) IKAP expression levels modulate disease severity in a mouse model of familial dysautonomia I. Hum Mol Genet 21: 5078-5090.
  • Drenth JP, Waxman SG (2007) Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest 117: 3603-3609.
  • Dyck PJ (1993) Neuronal atrophy and degeneration pre¬dominantly affecting peripheral sensory and autonomic neurons. In: Peripheral Neuropathy (3rd ed.) (Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF, Eds) WB Saunders Co, Philadelphia, PA, USA, p. 1065-1093.
  • Edinger AL, Cinalli RM, Thompson CB (2003) Rab7 pre¬vents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev Cell 5: 571-582.
  • Edvardson S, Cinnamon Y, Jalas C, Shaag A, Maayan C, Axelrod FB, Elpeleg O (2012) Hereditary sensory auto- nomic neuropathy caused by a mutation in dystonin. Ann. Neurol 71: 569-572.
  • Fischer D, Schabhüttl M, Wieland T, Windhager R, Strom TM, Auer-Grumbach M (2014) A novel missense muta¬tion confirms ATL3 as a gene for hereditary sensory neuropathy type 1. Brain 137: e286.
  • Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R, Dunn TM (2002) Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, pre¬dominantly inactivate serine palmitoyltransferase. J Biol Chem 277: 10194-10200.
  • Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP, von Eckardstein A, Brown RH, Hornemann T, Eichler FS (2011) Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest 121: 4735-4745.
  • Gemignani F, Marbini A (2001) Charcot-Marie-Tooth dis¬ease (CMT): distinctive phenotypic and genotypic fea¬tures in CMT type 2. J Neurol Sci 184: 1-9.
  • Greco A, Villa R, Pierotti MA (1996) Genomic organization of the human NTRK1 gene Oncogene 13: 2463-2466.
  • Guelly C, Zhu PP, Leonardis L, Papic L, Zidar J, Schabhüttl M, Strohmaier H, Weis J, Strom TM, Baets J, Willems J, De Jonghe P, Reilly MM, Fröhlich E, Hatz M, Trajanoski S, Pieber TR, Janecke AR, Blackstone C, Auer-Grumbach M (2011) Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I Am J Hum Genet 88: 99-105.
  • Hanada K (2003) Review: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632: 16-30.
  • Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Purification and characterization of the human elongator complex. J Biol Chem 277: 3047-3052.
  • Heise CJ, Xu BE, Deaton SL, Cha SK, Cheng CJ, Earnest S, Sengupta S, Juang YC, Stippec S, Xu Y, Zhao Y, Huang CL, Cobb MH (2010) Serum and glucocorti- coid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members J Biol Chem 285: 25161¬25167.
  • Holmberg C, Katz S, Lerdrup M, Herdegen T, Jäättelä M, Aronheim A (2002) A novel specific role for IkappaB kinase complex-associated protein in cytosolic stress sig¬naling. J Biol Chem 277: 31918 -31928.
  • Holmes D (2012) Anti-NGF painkillers back on track? Nat Rev Drug Discov 11: 337-338.
  • Hornemann T, Richard S, Rütti MF, Wei Y, von Eckardstein A (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 281: 37275-37281.
  • Houlden H, King RHM, Muddle JR, Warner TT, Reilly MM, Orrell RW, Ginsberg L (2004) A novel RAB7 mutation associated with ulcero-mutilating neuropathy. Ann Neurol 56: 586-590.
  • Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin- like GTPases involved in the generation of the tubular ER network. Cell 138: 549-561.
  • Hunnicutt BJ, Chaverra M, George L, Lefcort F (2012) IKAP/Elp1 Is Required in vivo for neurogenesis and neu¬ronal survival, but not for neural crest migration. PLoS One 7: e32050.
  • Ilgaz Aydinlar E, Rolfs A, Serteser M, Parman Y (2014) Mutation in FAM134B causing hereditary sensory neu¬ropathy with spasticity in a Turkish family. Muscle Nerve 49: 774-775.
  • Janssena K, Goethals S, Atkinson D, Ermanoska B, Fransen E, Jordanova A, Auer-Grumbach M, Asselbergh B, Timmerman V(2014) Human Rab7 mutation mimics fea¬tures of Charcot-Marie- Tooth neuropathy type 2B in Drosophila. Neurobiol Dis 65: 211-219.
  • Johansen LD, Naumanen T, Knudsen A, Westerlund N, Gromova I, Junttila M, Nielsen C, B0ttzauw T, Tolkovsky A, Westermarck J, Coffey ET, Jäättelä M, Kallunki T (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121: 854-864.
  • Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H, Wubbolts R, Neefjes J (2001) The Rab7 effector protein RILP controls lyso- somal transport by inducing the recruitment of dynein- dynactin motors. Curr Biol 11: 1680-1685.
  • Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1993) Brain synapses contain inducible forms of the transcription fac¬tor NF-kappa B. Mech Dev 43: 135-147.
  • Kasem K, Gopalan V, Salajegheh A, Lu CT2, Smith RA, Lam AK (2014) The roles of JK-1 (FAM134B) expres¬sions in colorectal cancer. Exp Cell Res 326: 166-173.
  • Klebanoff MA, Neff JM (1980) Familial dysautonomia associated with recurrent osteomyelitis in a non-Jewish girl. J Pediatr 96: 75-77.
  • Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, B Dyck PJ, Parisi JE, Mer G, Smith DI, Dyck PJ (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43: 595-600.
  • Kondo M, Takei Y, Hirokawa N (2012) Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron 73: 743-757.
  • Kornak U, Mademan I, Schinke M, Voigt M, Krawitz P, Hecht J, Barvencik F, Schinke T, Gießelmann S, Beil FT, Pou-Serradell A, Vilchez JJ, Beetz C, Deconinck T, Timmerman V, Kaether C, De Jonghe P, Hübner CA, Gal A, Amling M, Mundlos S, Baets J, Kurth I (2014) Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain 137: 683¬692.
  • Kurth I (2010) Hereditary Sensory and Autonomic Neuropathy Type II. GeneReviews® [Internet].
  • Kurth I, Pamminger T, Hennings JC, Soehendra D, Huebner AK, Rotthier A, Baets J, Senderek J, Topaloglu H, Farrell SA, Nürnberg G, Nürnberg P, De Jonghe P, Gal A, Kaether C, Timmerman V, Hübner CA (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41: 1179-1181.
  • Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118: 243-255.
  • Lafreniere RG, MacDonald ML, Dube MP, MacFarlane J, O'Driscoll M, Brais B, Meilleur S, Brinkman RR, Dadivas O, Pape T, Platon C, Radomski C, Risler J, Thompson J, Guerra-Escobio AM, Davar G, Breakefield XO, Pimstone SN, Green R, Pryse-Phillips W, Goldberg YP, Younghusband HB, Hayden MR, Sherrington R, Rouleau GA, Samuels ME (2004) Identification of a novel gene (HSN2) causing hereditary sensory and auto¬nomic neuropathy type II through the study of Canadian genetic isolates. Am J Hum Genet 74: 1064-1073.
  • Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R (1992) Targeted mutation of the gene encod¬ing the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69: 737¬749.
  • Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, Ebbinghaus M, Goral RO, Stodberg T, Hennings JC, Bergmann M, Altmuller J (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45: 1399¬1404.
  • Leyne M, Mull J, Gill SP, Cuajungco MP, Oddoux C, Blumenfeld A, Maayan C, Gusella JF, Axelrod FB, Slaugenhaupt SA (2003) Identification of the first non- Jewish mutation in familial Dysautonomia. Am J Med Genet A 118A: 305-308.
  • Liou AK, Willison KR (1997) Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J 16: 4311-4316.
  • Manganelli F, Pisciotta C, Provitera V, Taioli F, Iodice R, Topa A, Fabrizi GM, Nolano M, Santoro L (2012) Autonomic nervous system involvement in a new CMT2B family. J Peripher Nerv Syst 17: 361-364.
  • Markgraf DF, Peplowska K, Ungermann C (2007) Rab cas¬cades and tethering factors in the endomembrane system. FEBS Lett 581: 2125-2130.
  • McCormick J A Ellison DH (2011) The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 91: 177-219.
  • McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 354: 411-414.
  • Mead S, Gandhi S, Beck J, Caine D, Gajulapalli D, Carswell C, Hyare H, Joiner S, Ayling H, Lashley T, Linehan JM, Al-Doujaily H, Sharps B, Revesz T, Sandberg MK, Reilly MM, Koltzenburg M, Forbes A, Rudge P, Brandner S, Warren JD, Wadsworth JD, Wood NW, Holton JL, Collinge J (2013) A novel prion disease associated with diarrhea and autonomic neuropathy. N Engl J Med 369: 1904-1914.
  • Memet S (2006) NF-kappaB functions in the nervous sys¬tem: from development to disease. Biochem Pharmacol 72: 1180-1195.
  • Merrill AH Jr (2011). Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111: 6387-6422.
  • Mouillet-Richard S, Laurendeau I, Vidaud M, Kellerman O, Laplanche JL (1999) Prion protein and neuronal differen¬tiation: quantitative analysis of prnp gene expression in a murine inducible neuroectodermal progenitor. Microbes Infect 1: 969-976.
  • Murphy SM, Davidson GL, Brandner S, Houlden H, Reilly MM (2012) Mutation in FAM134B causing severe hered¬itary sensory neuropathy. J Neurol Neurosurg Psychiatry 83: 119-120.
  • Murphy SM, Ernst D, Wei Y, Laura M, Liu YT, Polke J, Blake J, Winer J, Houlden H, Hornemann T, Reilly MM (2013 a) Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2. Neurology 80: 2106-2111.
  • Murphy SM, Laurá M, Reilly MM (2013b) DNA testing in hereditary neuropathies. Handb Clin Neurol 115: 213-32.
  • Naumanen T, Johansen LD, Coffey ET, Kallunki T (2008) Loss-of-function of IKAP/ELP1.Could neuronal migra¬tion defect underlie familial dysautonomia? Cell Adh Migr 2: 236-239.
  • Nicholson GA, Dawkins JL, Blair IP, Auer- Grumbach M, Brahmbhatt SB, Hulme DJ (2001) Hereditary sensory neuropathy type I: Haplotype analysis shows founders in southern England and Europe. Amer J Hum Genet 69: 655-659.
  • Nikawa J, Kimura M (2012) A novel function of the human chaperonin CCT epsilon subunit in yeast. Biosci Biotechnol Biochem 76: 199-201.
  • Pattarawarapan M, Burgess K (2003) Molecular basis of neurotrophin-receptor interactions. J Med Chem 46: 5277-5291.
  • Penno A, Reilly MM, Houlden H, Laurá M, Rentsch K, Niederkofler V, Stoeckli ET, Nicholson G, Eichler F, Brown RH Jr, von Eckardstein A, Hornemann T (2010) Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 285: 11178-11187.
  • Potulska-Chromik A, Sinkiewicz-Darol E, Kostera- Pruszczyk A, Drac H, Kabzińska D, Zakrzewska-Pniewska B, Gołębiowski M, Kochański A (2012) A novel homozy¬gous mutation in the WNK1/HSN2 gene causing heredi¬tary sensory neuropathy type 2. Acta Biochim Pol 50: 413-415.
  • Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C (2010) Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 123: 1480-1491.
  • Qin W, Leonhardt H, Pichler G (2011) Regulation of DNA methyltransferase 1 by interactions and modifications Nucleus 2: 392-402.
  • Rinaldi R, Atul P (2013) Inherited polyneuropathies. Physical Medicine and Rehablitation. Suppl 1: 63-73.
  • Rinehart J, Vázquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, Bobadilla NA, Gamba G, Lifton RP (2011) WNK2 kinase is a novel regulator of essential neuronal cationchloride cotransporters. J Biol Chem 286: 30171-30180.
  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conver¬sion as a mechanism of progression from early to late endosomes. Cell 122: 735-749.
  • Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C (2008) Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Genet 17: 1591¬1604.
  • Rivière JB, Ramalingam S, Lavastre V, Shekarabi M, Holbert S, Lafontaine J, Srour M, Merner N, Rochefort D, Hince P, Gaudet R, Mes-Masson AM, Baets J, Houlden H, Brais B, Nicholson GA, Van Esch H, Nafissi S, De Jonghe P, Reilly MM, Timmerman V, Dion PA, Rouleau GA (2011) KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet 89: 219-230.
  • Roddier K, Thomas T, Marleau G, Gagnon AM, Dicaire MJ, St-Denis A, Gosselin I, Sarrazin AM, Larbrisseau A, Lambert M, Vanasse M, Gaudet D, Rouleau GA, Brais B (2005) Two mutations in the HSN2 gene explain the high prevalence of HSAN2 in French Canadians. Neurology 64: 1762-1767.
  • Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A, Almeida-Souza L, Van Hoof K, Jacobs A, De Vriendt E, Schlotter-Weigel B, Löscher W, Vondrácek P, Seeman P, De Jonghe P, Van Dijck P, Jordanova A, Hornemann T, Timmerman V (2010) Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Amer J Hum Genet 87: 513-522.
  • Rotthier A, Baets J, De Vriendt E, Jacobs A, Auer-Grumbach M, Lévy N, Bonello-Palot N, Kilic SS, Weis J, Nascimento A, Swinkels M, Kruyt MC, Jordanova A, De Jonghe P, Timmerman V (2009) Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correla¬tion. Brain 132: 2699-2711.
  • Saxena S, Bucci C, Weis J, Kruttgen A (2005) The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 25: 10930-10940.
  • Schabhüttl M, Wieland T, Senderek J, Baets J, Timmerman V, De Jonghe P, Reilly MM, Stieglbauer K, Laich E, Windhager R, Erwa W, Trajanoski S, Strom TM, Auer¬Grumbach M (2014) Whole-exome sequencing in patients with inherited neuropathies:outcome and challenges. J Neurol 261: 970-982.
  • Shekarabi M, Girard N, Rivière JB, Dion P, Houle M, Toulouse A, Lafrenière RG, Vercauteren F, Hince P, Laganiere J, Rochefort D, Faivre L, Samuels M, Rouleau GA (2008) Mutations in the nervous system- specific HSN2 exon of WNK1 cause hereditary sen¬sory neuropathy type II. J Clin Invest 118: 2496¬2505.
  • Silveira AL Binkowski RT, Rich BF, Benetti MB, Almeida AM (2012) Heraditary sensory and autonomic neuropa¬thy type 3 in non-Jewish child. Arq Neuropsiquiatr 70: 900-904.
  • Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68: 598-605.
  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sym¬pathetic neuropathies in mice carrying a disrupted Trk/ NGF receptor gene. Nature 368: 246-249.
  • Soldati T, Rancano C, Geissler H, Pfeffer SR (1995) Rab7 and Rab9 are recruited onto late endosomes by biochem¬ically distinguishable processes. J Biol Chem 270: 25541-25548.
  • Spinosa MR, Progida C, De Luca A, Colucci AM, Alifano P, Bucci C (2008)Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease. J Neurosci 28: 1640-1648.
  • Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol: REVIEWS 3007.
  • Tang WK, Chui CH., Fatima S, Kok SHL, Pak KC, Ou TM, Hui KS ,Wong MM, Wong J, Law S, Tsao SW, Lam KY, Beh PSL, Srivastava G, Chan ASC, Ho KP, Tang JCO (2007) Oncogenic properties of a novel gene JK-1 located in chromosome 5p and its overexpression in human esophageal squamous cell carcinoma. Int J Molec Med 19: 915-923.
  • Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11: 551-555.
  • Van Der Sluijs P, Hull M, Zahraoui A, Tavitian A, Goud B, Mellman I (1991) The small GTP-binding protein rab4 is associated with early endosomes. Proc Natl Acad Sci U S A 88: 6313-6317.
  • Vanik DL Surewicz WK (2002) Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie- like form. J Biol Chem 277: 49065-49070.
  • Wang HR, Liu Z, Huang CL (2008) Domains of WNK1 kinase in the regulation of ROMK1 Am J Physiol Renal Physiol 295: 438-445.
  • Wang X, Kumar R, Navarre J, Casanova JE, Goldenring JR (2000) Regulation of vesicle trafficking in Madin-Darby canine kidney cells by Rab11a and Rab25. J Biol Chem 275: 29138-29146.
  • Wiesmann C, Ultsch MH, Bass SH, de Vos AM (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401: 184-188.
  • Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293: 1107-1112.
  • Yang M, Chen T, Han C, Li N, Wan T, Cao X (2004) Rab7b, a novel lysosome-associated small GTPase, is involved in monocytic differentiation of human acute promyelocytic leukemia cells. Biochem Biophys Res Commun 318: 792-799.
  • Yonekawa, Y, Harada A, Okada Y, Funakoshi T, Kanai Y, Takei Y, Terada S, Noda T, Hirokawa N (1998) Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol 141: 431-441.
  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2: 107-117.
  • Zhang M, Chen L, Wang S, Wang T (2009) Rab7: roles in membrane trafficking and disease. Biosci Rep 29: 193¬209.
  • Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH, Wang T, Ran K, Li Y, Li X, Xu M, Luo J, Feng S, Ma X, Ma H, Chai Z, Zhou Z, Yao J, Zhang X, Liu JY (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93: 957-966.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.