PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 4 |
Tytuł artykułu

Osmoregulation and osmoprotection in the leaf cells of two olive cultivars subjected to severe water deficit

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we compared the efficacy of defense mechanisms against severe water deficit in the leaves of two olive (Olea europaea L.) cultivars, ‘Chemlali’ and ‘Meski’, reputed drought resistant and drought sensitive, respectively. Two-year old plants growing in sand filled 10-dm³ pots were not watered for 2 months. Changes in chlorophyll fluorescence parameters and malondialdehyde content as leaf relative water content (RWC) decreased showed that ‘Chemlali’ was able to maintain functional and structural cell integrity longer than ‘Meski’. Mannitol started to accumulate later in the leaves of ‘Chemlali’ but reached higher levels than in the leaves of ‘Meski’. The latter accumulated several soluble sugars at lower dehydration. ‘Chemlali’ leaves also accumulated larger quantities of phenolic compounds which can improve its antioxidant response. Furthermore, the activity of three antioxidant enzymes catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) increased as leaf RWC decreased. However, differences were observed between the two cultivars for CAT and POD but not for APX. The activity of the first two enzymes increased earlier in ‘Meski’, but reached higher levels in ‘Chemlali’. At low leaf hydration levels, ‘Chemlali’ leaves accumulated mannitol and phenolic compounds and had increased CAT and POD activities. These observations suggest that ‘Chemlali’ was more capable of maintaining its leaf cell integrity under severe water stress because of more efficient osmoprotection and antioxidation mechanisms.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
31
Numer
4
Opis fizyczny
p.711-721,fig.,ref.
Twórcy
autor
  • Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Gabes, Cite Erriadh, Zrig, 6072 Gabes, Tunisia
autor
  • Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Gabes, Cite Erriadh, Zrig, 6072 Gabes, Tunisia
autor
  • Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Gabes, Cite Erriadh, Zrig, 6072 Gabes, Tunisia
Bibliografia
  • Aebi H (1984) Catalase in vitro. In: Colowick SP, Kaplane NO (eds) Meth Enzymol 105:121–126
  • Alonso M, Arranz D, Reboto V, Rodrïguez-Cabello JC (2001) Effect of a-, b- and g-cyclodextrins on the inverse temperature transition of the bioelastic thermo-responsive polymer poly(VPGVG). Macromol Chem Phys 202:3027–3034. doi:10.1002/1521-3935 (20011001)202:15<3027::AID-MACP3027>3.0.CO;2-B
  • Angelopoulos K, Dichio B, Xiloyannis C (1996) Inhibition of photosynthesis in Olive trees (Olea europaea L.) during water stress and rewatering. J Exp Bot 301:1093–1100. doi: 10.1093/jxb/47.8.1093
  • Arora A, Byrem TM, Nair MG, Strasbug GM (2000) Modulation of liposomal membrane fluidity by flavonoids. Arch Biochem Biophys 373:102–109. doi:10.1006/abbi.1999.1525
  • Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonc¸alves BC, Ferreira HF, Correia CM (2006) Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Sci 170:596–605. doi:10.1016/j.plantsci.2005.10.014
  • Bajji M, Kinet JM, Lutts S (2002) Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Can J Bot 80:297–304. doi: 10.1139/b02-008
  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118
  • Bohnert HJ, Nelson DE, Jensenayb RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111
  • Boussadia O, Ben Mariem F, Mechri B, Boussetta W, Braham M, Ben El Hadj S (2008) Response to drought of two olive tree cultivars (cv Koroneki and Meski). Sci Hortic (Amsterdam) 116:388–393. doi:10.1016/j.scienta.2008.02.016
  • Boyer JS, Ort DR, Ortiz-Lopez A (1987) Photophosphorylation at low water potentials. Curr Top Plant Biochem Physiol 6:69–73
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Chartzoulakis K, Patakas A, Bosabalidis A (1999) Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ Exp Bot 42:113–120. doi:10.1016/S0098-8472(99)00024-6
  • Chartzoulakis K, Bosabalidis A, Patakas A, Vemmos S (2000) Effects of water stress on water relations, gas exchange and leaf structure of olive tree. Acta Hortic 537:241–247
  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264. doi:10.1071/FP02076
  • Christie WW, Brechany EY, Marekov IN, Stefanov KL, Andreev SN (1994) The fatty acids of the sponge Hymeniacidon sanguinea from the Black Sea. Comp Biochem Physiol B 109:245–252. doi:10.1016/0305-0491(94)90008-6
  • Connor DJ (2005) Adaptation of olive (Olea europaea L.) to water environments. Aust J Agric Res 56:1181–1189
  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi:10.1146/annurev.pp.43.060192. 003123
  • Dichio B, Xiloyannis C, Angelopoulos K, Nuzzo V, Bufo S, Celano G (2003) Drought-induced variations of water relations parameters in Olea europaea. Plant Soil 257:381–389. doi:10.1023/A: 1027392831483
  • Dichio B, Xiloyannis C, Sofo A, Montanaro G (2006) Osmotic adjustment in leaves and roots of olive tree (Olea europaea L.) during drought stress and rewatering. Tree Physiol 26:179–185
  • Ennajeh M, Vadel AM, Khemira H, Ben Mimoun M, Hellali R (2006) Defense mechanisms against water deficit in two olive (Olea europaea L.) cultivars ‘Meski’ and ‘Chemlali’. J Hortic Sci Biotechnol 81:99–104
  • Ennajeh M, Tounekti T, Vadel AM, Khemira H, Cochard H (2008) Water relations and drought-induced embolism in two olive (Olea europaea L.) varieties ‘Meski’ and ‘Chemlali’ under severe drought conditions. Tree Physiol 28:971–976
  • Fernández JE, Moreno F (1999) Water use by the olive tree. J Crop Prod 2:101–162. doi:10.1300/J144v02n02_05
  • Fernández JE, Moreno F, Girón IF, Blázquez OM (1997) Stomatal control of water use in olive leaves. Plant Soil 190:179–192. doi: 10.1023/A:1004293026973
  • Foyer CH, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ 17:579–587. doi: 10.1111/j.1365-3040.1994.tb00146.x
  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861 (68)90654-1
  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. doi: 10.1007/s004250050524
  • Kasraoui MF, Braham M, Denden M, Mehri H, Garcia M, Lamaze T, Attia F (2006) Effet du déficit hydrique au niveau de la phase photochimique du PSII chez deux variétés d’olivier. C R Biol 329:98–105
  • Kramer PJ, Brix H (1965) Measurment of water deficit in plants. UNESCO. Arid Zon Res 25:343–531
  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot (Lond) 98:693–713. doi:10.1093/aob/mcl114
  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi:10.1046/j.0016-8025.2001.00814.x
  • Lo Gullo MA, Salleo S (1988) Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol 108:267–276. doi:10.1111/j.1469-8137.1988.tb04162.x
  • Lu C, Zhang J (1998) Effect of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust J Plant Physiol 25:883–892
  • Marchi S, Tognetti R, Minnocci A, Borghi M, Sebastiani L (2008) Variation in mesophyll anatomy and photosynthetic capacity during leaf development in a deciduous mesophyte fruit tree (Prunus persica) and sclerophyllous Mediterranean shrub (Olea europaea). Trees (Berl). doi:10.1007/s00468-008-0216-9
  • Masia A (2003) Physiological effects of oxidative stress in relation to ethylene in post-harvest produce. In: Hodges DM (ed) Postharvest oxidative stress in horticultural crops. Food Products Press, New York, pp 165–197
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659
  • Morgan JM (1984) Osmoregulation and water in higher plants. Annu Rev Plant Physiol 35:299–319. doi:10.1146/annurev.pp.35. 060184.001503
  • Moriana A, Villalobos FJ, Fereres E (2002) Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant Cell Environ 25:395–405. doi:10.1046/j.0016-8025.2001.00822.x
  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105:389–397. doi:10.1016/0003-2697(80)90475-3
  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317. doi:10.1093/jexbot/51.348.1309
  • Peltzer D, Dreyer E, Polle A (2002) Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiol Biochem 40:141–150. doi:10.1016/S0981-9428(01)01352-3
  • Pennycooke JC, Cox S, Stushnoff JC (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia 9 hybrida). Environ Exp Bot 53:225–232. doi:10.1016/j.envexpbot.2004.04.002
  • Ranjbarfordoei A, Samson R, Van Damme P (2006) Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44:513–522. doi:10.1007/s11099-006-0064-z
  • Rejšková A, Patková L, Stodůlková E, Lipavská H (2007) The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J Plant Physiol 164:174–184. doi:10.1016/j.jplph.2005.09.011
  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29. doi:10.1023/A:1020125719386
  • Rousseaux MS, Benedetti JP, Searles PS (2008) Leaf-level responses of olive trees (Olea europaea) to the suspension of irrigation during the winter in arid region of Argentina. Sci Hortic (Amsterdam) 115:135–141. doi:10.1016/j.scienta.2007.08.005
  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341. doi:10.1046/j.1365-3040.2002.00754.x
  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906. doi:10.1046/j.1365-3040.1997.d01-134.x
  • Smirnoff N (1993) The role of active oxygen in the response to water deficit and desiccation. New Phytol 125:27–58. doi:10.1111/j. 1469-8137.1993.tb03863.x
  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060. doi: 10.1016/0031-9422(89)80182-7
  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive tree in response to drought stress. Physiol Plant 121:58–65. doi: 10.1111/j.0031-9317.2004.00294.x
  • Sofo A, Dichio B, Xiloyannis C, Masia A (2005) Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol 32:45–53. doi: 10.1071/FP04003
  • Sofo A, Manfreda S, Dichio B, Fiorentino M, Xiloyannis C (2007) The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrol Earth Syst Sci Discuss 4:2811–2835
  • Spanos GA, Wrolstad RE (1990) Influence of variety, maturity, processing and storage on the phenol composition of pear juice. J Agric Food Chem 38:817–824. doi:10.1021/jf00093a049
  • Syros T, Yupsanis T, Economou A (2001) Factors affecting the determination of peroxidase activity of Ebenus cretica L. cuttings. A preliminary survey. J Prop Ornam Plants 1:50–53
  • Tambussi EA, Casadesus J, MunnéBosch S, Araus JL (2002) Photoprotection in water stressed plants of durum wheat (Triticum turgidum var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Funct Plant Biol 29:35–44. doi:10.1071/PP01104
  • Ushimaru T, Maki Y, Sano S, Koshiba K, Asada K, Tsuji H (1997) Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant Cell Physiol 38:541–549
  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376. doi:10.1016/j.jplph.2007.05.001
  • Xiloyannis C, Pezzarosa B, Jorba J,Angelini P (1988) Effect of soilwater content on gas exchange in olive trees. Adv Hortic Sci 2:58–63
  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi: 10.1016/S1360-1385(00)01838-0
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-42b9438c-92e8-4d1d-bbea-ae6c7028d7ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.