PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 30 | 2 |
Tytuł artykułu

Additive biomass models for Larix spp. single-trees sensitive to temperature and precipitation in Eurasia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of the biomass of larch (genus Larix spp.) trees on the total component composition based on regression equations having the additive biomass structure. Two trends of changes in the tree biomass structure are revealed: due to the mean January temperature and due to the mean annual precipitation. It was shown for the first time that both trends are mutually determined: the intensity of biomass trend in relation to the temperature is changing when depending on the level of precipitation, and the intensity of biomass trend in relation to precipitation level is changing during to a transition from the cold zone to the warm one and vice versa.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
30
Numer
2
Opis fizyczny
artricle [16p.], fig.,ref.
Twórcy
  • Ural State Forest Engineering University, Sibirskii trakt 37, Yekaterinburg, 620100 Russian Federation
  • Botanical Garden, Ural Branch, Russian Academy of Sciences, 8 Marta 202a, Yekaterinburg, 620144 Russian Federation
autor
  • Department of Spatial Management and Tourism, Faculty of Earth Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland,
autor
  • Ural State Forest Engineering University, Sibirskii trakt 37, Yekaterinburg, 620100 Russian Federation
  • Botanical Garden, Ural Branch, Russian Academy of Sciences, 8 Marta 202a, Yekaterinburg, 620144 Russian Federation
  • Ural State Forest Engineering University, Sibirskii trakt 37, Yekaterinburg, 620100 Russian Federation
Bibliografia
  • Baskerville G.L., 1972, Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2. 49-53.
  • Cunia T.& Briggs R.D., 1984, Forcing additivity of biomass tables: some empirical results. Canadian Journal of Forest Research 14: 376-384.
  • Dong L., Zhang L. & Li F., 2015, A three-step proportional weighting system of nonlinear biomass equations. Forest Science 61(1): 35-45.
  • Forrester D.I., Tachauer I.H.H., Annighoefer P., Barbeito I., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S. &, Sileshi G.W., 2017, Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management 396: 160–175.
  • Golubyatnikov L.L. & Denisenko Е.А., 2009, Influence of climatic changes on the vegetation of European Russia. News of Russian Academy of Sciences. Geographic series 2: 57-68.
  • Hosoda K. & Iehara T., 2010, Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. J. For. Res. 15(5): 299-306. (doi: 10.1007/s10310-010-0192-y).
  • Jenkins J.C., Chojnacky D.C., Heath L.S. & Birdsey R.A., 2004, Comprehensive database of diameter-based regressions for North American tree species. USDA Forest Service Northeastern Research Station. General Technical Report NE-319. 45 pp.
  • Jucker T., Caspersen J., Chave J., Antin C., Barbier N., Bongers F., Dalponte M., van Ewijk K.Y., Forrester D.I., Heani M., Higgins S.I., Holdaway R.J., Iida Y., Lorimer C., Marshall P.M., Momo S., Moncrieff G.R., Ploton P., Poorter L., Rahman K.A., Schlund M., Sonké B., Sterck F.J., Trugman A.T., Usoltsev V.A., Vanderwel M.C., Waldner P., Wedeux B., Wirth C., Wöll H., Woods M., Xiang W., Zimmermann N. & Coomes D.A., 2017, Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology 23: 177-190.
  • Kazaryan V.О., 1969, Aging of higher plants. Nauka Publ., Moscow.
  • Laing J., & Binyamin J., 2013, Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change 2: 275-283. (doi: 10.4236/ajcc.2013.24027).
  • Liang J., Crowther T.W., Picard N., Wiser S., Zhou M., Alberti G., Schulze E.-D., McGuire A.D., Bozzato F., Pretzsch H., de-Miguel S., Paquette A., Hérault B., Scherer-Lorenzen M., Barrett C.B., Glick H.B., Hengeveld G.M., Nabuurs G.-J., Pfautsch S., Viana H., Vibrans A.C., Ammer C., Schall P., Verbyla D., Tchebakova N.M., Fischer M., Watson J.V., Chen H.Y.H., Lei X., Schelhaas M.-J., Lu H., Gianelle D., Parfenova E.I., Salas C., Lee E., Lee B., Kim H.S., Bruelheide H., Coomes D.A., Piotto D., Sunderland T., Schmid B., Gourlet-Fleury S., Sonké B., Tavani R., Zhu J., Brandl S., Vayreda J., Kitahara F., Searle E.B., Neldner V.J., Ngugi M.R., Baraloto C., Frizzera L., Bałazy R., Oleksyn J., Zawiła-Niedźwiecki T., Bouriaud O., Bussotti F., Finér L., Jaroszewicz B., Jucker T., Valladares F., Jagodzinski A.M., Peri P.L., Gonmadje C., Marthy W., O’Brien T., Martin E.H., Marshall A.R., Rovero F., Bitariho R., Niklaus P.A., Alvarez-Loayza P., Chamuya N., Valencia R., Mortier F., Wortel V., Engone-Obiang N.L., Ferreira L.V., Odeke D.E., Vasquez R.M., Lewis S.L. & Reich P.B., 2016, Positive biodiversity-productivity relationship predominant in global forests. Science. 354(6309): 196-208.
  • Nikitin К.Е., 1965, Forest and mathematics. Lesnoe Khozyaistvo [Forest Management] 5: 25-29.
  • Poorter H., Jagodzinski A.M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B. & Sack L., 2015, How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208(3): 736-749.
  • Reed D.D. & Green E.J., 1985, A method of forcing additivity of biomass tables when using nonlinear models. Canadian Journal of Forest Research 15: 1184-1187.
  • Tang S., Zhang H. & Xu H., 2000, Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinica 36: 19–27. (in Chinese with English abstract).
  • The Plant List, 2019, version 1.1. (http://www.theplantlist.org), [Accessed 12.03.2019].
  • Usoltsev V.A., 1972, Birch and aspen crown biomass in forests of Northern Kazakhstan. Vestnik Selskokhozyaistvennoi Nauki Kazakhstana [Bulletin of Agricultural Science of Kazakhstan] 4: 77-80.
  • Usoltsev V.A., 1988, Growth and structure of forest stand biomass. Novosibirsk: Nauka Publ. 253 pp. (http://elar.usfeu.ru/handle/123456789/3352).
  • Usoltsev V.A., 2016, Single-tree biomass of forest-forming species in Eurasia: database, climatе-related geography, weight tables. Yekaterinburg: Ural State Forest Engineering University. 336 pp. (http://elar.usfeu.ru/handle/123456789/5696).
  • Usoltsev V.A., Kolchin K.V. & Voronov M.P., 2017, Dummy variables and biases of allometric models when local estimating tree biomass (on an example of Picea L.). Eco-Potencial 1(17): 22-39. (http://elar.usfeu.ru/bitstream/123456789/6502/1/eko-1702.pdf).
  • Usoltsev V.A., Shobairi S.O.R. & Chasovskikh V.P., 2018a, Geographic gradients of forest biomass of two nee-dled pines on the territory of Eurasia. Ecological Questions 29(2): 9-17. (http://dx.doi.org/10.12775/EQ.2018.012).
  • Usoltsev V.А., Tsepordey I.S., Chasovskikh V.P. & Osmirko A.A., 2018b, Additive regional models of tree and stand biomass for Eurasia. Message 1: Genus Larix spp. Eco-Potencial 2(22): 16-34. (http://elar.usfeu.ru/bitstream/123456789/7665/1/eko_2-18-04.pdf).
  • World Weather Maps, 2007, URL. (https://www.mapsofworld.com/referrals/weather).
  • Zeng W.S., Duo H.R., Lei X.D., Chen X.Y., Wang X.J., Pu Y. & Zou W.T., 2017, Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. European Journal of Forest Research 136(20): 233–249. (https://doi.org/10.1007/s10342-017-1024-9).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-42277d51-3e16-4290-be3b-b314184c46de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.