Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 62 | 4 |
Tytuł artykułu

Substances with antibacterial activity in edible films - a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
This article is an overview of literature addressing edible fi lms and substances introduced to fi lms in order to impart them the antimicrobial activity. It describes natural polymers applied for the production of food packages and active substances of natural origin added to them, including: bacteriocins, enzymes, oils, and plant extracts. Further discussion refers to chitosan – a polysaccharide used for fi lm formation and characterised by strong antibacterial and antimycotic properties.
Opis fizyczny
  • Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland
  • 1. Appendini P., Hotchkiss J.H., Immobilization of lysozyme on food contact polymer as potential antimicrobial fi lms. Packaging Technol. Sci., 1997, 10, 271–279.
  • 2. Appendini P., Hotchkiss J.H., Review of antimicrobial food packaging. Innov. Food Sci. Em. Technol., 2002, 3, 113–126.
  • 3. Ayranci E., Tunç S., Cellulosed-based edible fi lms and their effects on fresh beans and strawberries. Z. Lebensm. Unters. Forsch. A., 1997, 205, 470–473.
  • 4. Baron J., Sumner S., Antimicrobial containing edible fi lms as an inhibitory system to control microbial growth on meat products. J. Food Prot., 1993, 56, 916.
  • 5. Beverlya R.L., Janes M.E., Prinyawiwatkula W., No H.K., Edible chitosan fi lms on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiol., 2008, 25, 534–537.
  • 6. Biswas S.R., Ray P., Johnson M.C., Ray B., Infl uence of growth conditions on the production of a bacteriocin, Pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol., 1991, 57, 1265–1267.
  • 7. Bravin B., Peressini D., Sensidoni A., Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. J. Food Eng., 2006, 76, 280–290.
  • 8. Burt S., Essential oils: their antimicrobial properties and potential applications in food – food review. Int. J. Food Microbiol., 2004, 94, 223–253.
  • 9. Cagri A., Ustunol Z., Ryser E.T., Antimicrobial, mechanical and moisture barrier properties of low pH whey protein-based edible fi lms containing p-aminobenzoic or sorbic acid. J. Food Sci., 2001, 66, 865–870.
  • 10. Cagri A., Ustunol Z., Ryser E.T., Inhibition of three pathogens on bologna and summer sausage slices using antimicrobial edible fi lms. J. Food Sci., 2002, 67, 2317–2324.
  • 11. Cagri A., Ustunol Z., Ryser E.T., Antimicrobial edible fi lms and coatings. J. Food Prot., 2004, 67, 833–848.
  • 12. Carlin E., Gontard N., Reich M., Nguyen C., Utilization of zein coating and sorbic acid to reduce Listeria monocytogenes growth on cooked sweet corn. J. Food Sci., 2001, 66, 1385–1389.
  • 13. Casariego A., Souza B.W.S., Vicente A.A., Teixeira J.A., Cruz L., Diaz R., Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocoll., 2008, 22, 1452–1459.
  • 14. Cha D.S., Choi J.H., Chinnan M.S., Park H.J., Antimicrobial fi lm based on Na-alginate and ĸ-carrageenan. Lebensm. Wiss. Technol., 2002, 35, 715–719.
  • 15. Cha D.S., Cooksey K., Chinnan M.S., Park H.J., Release of nisin from various heat-pressed and cast fi lms. Lebensm. Wiss. Technol., 2003, 36, 209–213.
  • 16. Chandrapati S., O’Sullivan D.J., Procedure for quantifi able assessment of nutritional parameters infl uencing nisin production by Lactococcus lactis subsp. lactis. J. Biotechnol., 1998, 63, 229–233.
  • 17. Chen M.X., Yeh G.H.C., Chiang B.H.C., Antimicrobial and physicochemical properties of methylcellulose and chitosan fi lms containing a preservative. J. Food Process. Preserv., 1996, 20, 379–390.
  • 18. Choi J.H., Choi W.Y., Cha D.S., Chinnan M.J., Park H.J., Lee D.S., Park J.M., Diffusivity of potassium sorbate in ĸ-carrageenan based antimicrobial fi lm. LWT-Food Sci. Technol., 2005, 38, 417–423.
  • 19. Coma V., Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci., 2008, 78, 90–103.
  • 20. Coma V., Deschamps A., Martil-Gros A., Bioactive packaging materials from edible chitosan polymer-antimicrobial activity assessment on dairy-related contaminants. J. Food. Sci., 2003, 68, 2788–2792.
  • 21. Coma V., Sebti I., Pardon P., Deschamps A., Pichavant F.H., Antimicrobial edible packaging based on cellulosic ethers, fatty acids and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J. Food Prot., 2001, 64, 470–475.
  • 22. Coupland J.N., Shaw N.B., Monahan F.J., O’Riordan E.D., O’Sullivan M., Modeling the effect of glycerol on moisture sorption behavior of whey protein edible fi lms. J. Food Eng., 2000, 43, 25–30.
  • 23. Cutter C.N., Siragusa G.R., Reduction of Brochothrix thermosphacta on beef surfaces following immobilization of nisin in calcium alginate gels. Lett. Appl. Microbiol., 1996, 23, 9–12.
  • 24. Daferera D.J., Ziogas B.N., Polissiou M.G., The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clovibacter michiganensis subsp. michiganensis. Crop Prot., 2003, 22, 39–44.
  • 25. Devlieghere F., Vermeulen J., Debevere J., Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 2004, 21, 703–714.
  • 26. Donhowe I.G., Fennema O., Water vapor and oxygen permeability of wax fi lms. J. Am. Oil Chem. Soc., 1993, 70, 867–873.
  • 27. Dorman H.J.D., Deans S.G., Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88, 308–316.
  • 28. Durango A.M., Soares N.F.F., Andrade N.J., Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Contr., 2006, 17, 336–341.
  • 29. Dutta P.K., Tripathi S., Mehrotra G.K., Dutta J., Perspectives for chitosan based antimicrobial fi lms in food application. Food Chem., 2009, 114, 1173–1182.
  • 30. Fuglsang C.C., Johansen C., Christgau S., Adler-Nissen J., Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci. Technol., 1995, 6, 390–396.
  • 31. Gill A.O., Holley R.A., Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Res. Int., 2000, 33, 83–90.
  • 32. Güçbilmez Ç.M., Yemenicioğlu A., Arslanoğlu A., Antimicrobial and antioxidant activity of edible zein fi lms incorporated with lysozyme, albumin proteins and disodium EDTA. Food Res. Int., 2007, 40, 80–91.
  • 33. Helander I.M., Alakomi H-L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Gorris L.G.M., Von A., Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem., 1998, 46, 3590–3595.
  • 34. Hirano S., Chitin and chitosan as novel biotechnological materials. Polym. Int., 1999, 48, 732–734.
  • 35. Hoffman K.L., Han I.Y., Dawson P.L., Antimicrobial effects of corn zein fi lms impregnated with nisin, lauric acid and EDTA. J. Food Prot., 2001, 64, 885–889.
  • 36. Kittur F.S., Kumar K.R., Tharanathan R.N., Functional packaging properties of chitosan fi lms. Z. Lebensm. Unters. Forsch. A., 1998, 206, 44–47.
  • 37. Ko S., Janes M.E., Hettiarachchy N.S., Johnson M.G., Physical and chemical properties of edible fi lms containing nisin and their action against Listeria monocytogenes. J. Food Sci., 2001, 66, 1006–1011.
  • 38. Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.J.E., A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 2001, 91, 453–462.
  • 39. Lopez–Rubio A., Gavara R., Lagaron J.M., Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci. Technol., 2006, 17, 567–575.
  • 40. Matan N., Rimkeeree H., Mawson A.J., Chompreeda P., Haruthaithanasan V., Parker M., Antimicrobial activity of cinnamon and clove oils under modifi ed atmosphere conditions. Int. J. Food Microbiol., 2006, 107, 180–185.
  • 41. Mecitoğlu Ç., Yemenicioğlu A., Arslanoğlu A., Elmaci Z.S., Korel F., Çetin A.E., Incorporation of partially purifi ed hen egg white lysozyme into zein fi lms for antimicrobial food packaging. Food Res. Int., 2006, 39, 12–21.
  • 42. Min S., Rumsey T.R., Krochta J.M., Diffusion of the antimicrobial lysozyme from a whey protein coating on smoked salmon. J. Food Eng., 2008, 84, 39–47.
  • 43. Min S., Han J.H., Harris L.J., Krochta J.M., Listeria monocytogenes inhibition by whey protein fi lms and coatings incorporating lysozyme. J. Food Prot., 2005a, 68, 2317–2325
  • 44. Min S., Harris L.J., Krochta J.M., Antimicrobial effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein fi lms incorporating the lactoperoxidase system against Salmonella enterica and Escherichia coli 0157:H7. J. Food Sci., 2005b, 70, M332-M338.
  • 45. Min S., Harris L.J., Krochta J.M., Listeria monocytogenes inhibition by whey protein fi lms and coatings incorporating the lactoperoxidase system. J. Food Sci., 2005c, 70, M314-M324.
  • 46. Min S., Krochta J.M., Inhibition of Penicillium commune by edible whey protein fi lms incorporating lactoferrin, lactoferrin hydrolysate and lactoperoxidase system. J. Food Sci., 2005, 70, M87-M94.
  • 47. Ming X.T., Weber G.H., Ayres J.W., Sandine W. E., Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci., 1997, 62, 413–415.
  • 48. No H.K., Park Y.N., Lee S.H., Meyers S., Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74, 65–72.
  • 49. Nussinovitch A., Hershko V., Gellan and alginate vegetable coating. Carboh. Polym., 1996, 30, 185–192.
  • 50. Park H.J., Chinnan M.S., Shewfelt R.L., Edible corn-zein fi lm coatings to extend storage life of tomatoes. J. Food Proc. Preserv., 1994, 18, 317–331.
  • 51. Pommet M., Redl A., Morel M.H., Guilbert S., Study of wheat gluten plasticization with fatty acids. Polymer, 2003, 44, 115–122.
  • 52. Ponce A., Roura S., del Valle C.E., Moreira M.R., Antimicrobial and antioxidant activities of edible coating enriched with natural plant extracts: In vitro and in vivo studies. Postharv. Biol. Technol., 2008, 49, 294–300.
  • 53. Pranoto Y., Salokhe V.M., Rakshit S.K., Physical and antibacterial properties of alginate–based edible fi lm incorporated with garlic oil. Food Res. Int., 2005, 38, 267–272.
  • 54. Quintavalla S., Vicini L., Antimicrobial food packaging in meat industry. Meat Sci., 2002, 62, SI, 373–380.
  • 55. Raybaudi–Massilia R.M., Mosqueda–Melgar J., Martin–Belloso O., Edible alginate – based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol., 2008, 121, 313–327.
  • 56. Redl A., Gontard N., Guilbert S., Determination of sorbic acid diffusivity in edible wheat gluten and lipid based fi lm. J. Food Sci., 1996, 61, 116–120.
  • 57. Rico-Peña D.C., Torres J.A., Edible methylcellulose-based fi lms as moisture-impermeable barriers in sundae ice cream cones. J. Food Sci., 1990, 55, 1468–1469.
  • 58. Rico-Peña D.C., Torres J.A., Sorbic acid and potassium sorbate permeability of an edible methylcellulose-palmitic acid fi lm: water activity and pH effects. J. Food Sci., 1991, 56, 497–499.
  • 59. Saucedo-Pompa S., Rojas-Molina R., Aguilera-Carbó A.F., Saenz-Galindo A., Heliodoro de La Garza, Jasso-Cantú D., Aguilar C.N., Edible fi lm based on candelilla wax to improve the shelf life and quality of avocado. Food Res. Int., 2009, 42, 511–515.
  • 60. Sebti I., Coma V., Active edible polysaccharide coating and interactions between solution coating compounds. Carboh. Polym., 2002, 49, 139–144.
  • 61. Seydim A.C., Sarikus G., Antimicrobial activity of whey protein based edible fi lms incorporated with oregano, rosemary and garlic essential oils. Food Res. Int., 2006, 39, 639–644.
  • 62. Shahidi F., Arachchi J.K.V., Jeon Y.J., Food applications of chitin and chitosan. Trends Food Sci. Technol., 1999, 10, 37–51.
  • 63. Shen X.L., Wu J.M., Chen Y., Zhao G., Antimicrobial and physical properties of sweet potato starch fi lms incorporated with potassium sorbate or chitosan. Food Hydrocoll., 2010, 24, 285–290.
  • 64. Silveira M.F.A., Soares N.F.F., Geraldine N.J., Andrade N.J., Botrel D.A., Goncalves M.P.J., Active fi lm incorporated with sorbic acid on pastry dough conservation. Food Contr., 2007, 18, 1063–1067.
  • 65. Sivarooban T., Hettiarachchy N.S., Johnson M.G., Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible fi lms. Food Res. Int., 2008, 41, 781–785.
  • 66. Suyatma N.E., Copinet A., Tighzert L., Coma V., Mechanical and barrier properties of biodegradable fi lms made from chitosan and poly (lactic acid) blends. J. Polym. Environ., 2004, 12, 1–6.
  • 67. Tharanathan R.N., Biodegradable fi lms and composite coatings: past, present and future. Trends Food Sci. Technol., 2003, 14, 71–78.
  • 68. Torres J.A., Bouzas J.O., Karel M., Microbial stabilization of intermediate moisture food surfaces III. Effects of surface preservative concentration and surface pH control on microbial stability of an intermediate moisture cheese analog. J. Food Process. Preserv., 1985, 9, 107–119.
  • 69. Trinetta V., Floros J.D., Cutter C.N., Sakacin A-containing pullulan fi lm: an active packaging system to control epidemic clones of Listeria monocytogenes in ready-to-eat foods. J. Food Safety, 2010, 30, 366–381.
  • 70. Tunç S., Duman O., Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite fi lms and investigation of carvacrol release. LWT-Food Sci Technol., 2011, 44, 465–472.
  • 71. Vojdani F., Torres J.A., Potassium sorbate permeability of polysaccharide fi lms: chitosan, methylcellulose and hydroxypropyl methylcellulose. J. Food Proc. Eng., 1990, 12, 33–48.
  • 72. Williams R., Mittal G.S., Water and fat transfer properties of polysaccharide fi lms on fried pastry mix. LWT – Food Sci. Technol., 1999, 32, 440–445.
  • 73. Xie L., Hettiarachchy N.S., Ju Z.Y., Meullenet J., Wang H., Slavik M.F., Janes ME., Edible fi lm coating to minimize eggshell breakage post-wash bacterial contamination measured by penetration in eggs. J. Food Sci., 2002, 67, 280–284.
  • 74. Zhang D., Quantick P.C., Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharv. Biol. Technol., 1997, 12, 195–202.
  • 75. Zheng L.Y., Zhu J.F., Study on antimicrobial activity of chitosan with different molecular weights. Carboh. Polym., 2003, 54, 527–530.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.