PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 69 | 4 |
Tytuł artykułu

Methyl jasmonate vapors affect the composition and peroxidation of major fatty acids in common buckwheat seedlings

Treść / Zawartość
Warianty tytułu
PL
Wpływ par jasmonianu metylu na skład i peroksydację głównych kwasów tłuszczowych w siewkach gryki zwyczajnej
Języki publikacji
EN
Abstrakty
EN
The effect of methyl jasmonate (MJ) vapors on the composition and peroxidation of major fatty acids in the organs of common buckwheat seedlings was investigated. The composition of fatty acids in the hypocotyl and cotyledons of seedlings changed significantly under exposure to MJ vapors in closed jars. Four-day exposure to MJ led to a significant reduction in the concentrations of stearic, linoleic, and linolenic acids in the hypocotyl, whereas oleic acid levels increased approximately 3.5-fold. A decrease in stearic acid levels and an increase in the content of linolenic acid were noted in cotyledons, whereas oleic acid levels decreased in roots. Seven-day exposure to MJ vapor caused a further reduction in stearic acid content and an increase in oleic acid and linoleic acid levels in the hypocotyl. At the same time, the linoleic acid content of roots and linolenic acid levels in cotyledons were doubled, but a 5-fold reduction in linolenic acid concentrations was observed in roots. Methyl jasmonate intensified fatty acid peroxidation in cotyledons after 4 and 7 days and in roots after 4 days of exposure. Peroxidation was inhibited in the hypocotyl and roots after 7 days. The noted changes in the composition and peroxidation of fatty acids are probably indicative of senescence in buckwheat seedlings under the influence of MJ. Senescence seems to proceed faster in cotyledons than in other organs of buckwheat seedlings.
PL
Badano wpływ par jasmonianu metylu (MJ) na skład głównych kwasów tłuszczowych i stopień ich peroksydacji w siewkach gryki zwyczajnej (Fagopyrum esculentum ‘Hruszowska’). MJ powodował duże zmiany w składzie kwasów tłuszczowych w poszczególnych tkankach siewek. I tak, 4-dniowe traktowanie MJ doprowadziło do dużych spadków zawartości kwasów: stearynowego, linolowego i linolenowego w hipokotylu siewek gryki, zaś zawartość kwasu oleinowego wzrosła ok. 3.5-krotnie. W przypadku liścieni wykazano obniżenie zawartości kwasu stearynowego oraz podwyższenie poziomu kwasu linolenowego, natomiast w tkankach korzeni stwierdzono obniżenie zawartości kwasu oleinowego. Dłuższe, 7-dniowe traktowanie również prowadziło do obniżenia zawartości kwasu stearynowego i wzrostu poziomu kwasu oleinowego w hipokotylu, lecz wówczas zawartość kwasu linolowego wzrosła. W tym samym czasie zawartości kwasów linolowego w korzeniach oraz linolenowego w liścieniach uległy podwojeniu, ale wystąpiło 5-krotne obniżenie poziomu kwasu linolenowego w korzeniach. MJ powodował wzrost peroksydacji kwasów tłuszczowych w liścieniach po 4 i 7 dniach stosowania, zaś w przypadku korzeni jedynie po 4 dniach. W hipokotylu i korzeniach 7-dniowe stosowanie MJ powodowało zahamowanie procesu peroksydacji. Zmiany składu kwasów tłuszczowych oraz stopnia ich peroksydacji są zapewne objawem procesów starzenia siewek gryki pod wpływem MJ. Wydaje się, że proces starzenia zachodzi szybciej w liścieniach, niż w pozostałych organach siewek gryki.
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
69
Numer
4
Opis fizyczny
Article 1691 [8p.], fig.,ref.
Twórcy
autor
  • Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
autor
  • Research Institute of Horticulture, Skierniewice, Pomologiczna 18, 96-100 Skierniewice, Poland
autor
  • Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland
Bibliografia
  • 1. Karuppusamy S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res. 2009;3:1222–1239.
  • 2. Ruiz-García Y, Gómez-Plaza E. Elicitors: a tool for improving fruit phenolic content. Agriculture. 2013;3:33–52. http://dx.doi.org/10.3390/agriculture3010033
  • 3. Saniewski M, Czapski J, Horbowicz M. The effect of methyl jasmonate on fatty acid and sterol content in tulip stems. J Plant Physiol. 1992;140:399–401. http://dx.doi.org/10.1016/S0176-1617(11)80815-1
  • 4. Czapski J, Horbowicz M, Saniewski M. The effect of methyl jasmonate on free fatty acids content in ripening tomato fruits. Biol Plant. 1992;34:71–76. http://dx.doi.org/10.1007/BF02925793
  • 5. Saniewski M, Czapski J, Horbowicz M. Fatty acid and sterol contents during methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana. Acta Agrobot. 1994;47:83–88. http://dx.doi.org/10.5586/aa.1994.015
  • 6. Saniewski M, Czapski J, Horbowicz M. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate. Acta Agrobot. 1994;47:89–95. http://dx.doi.org/10.5586/aa.1994.016
  • 7. Ananieva K, Malbeck J, Kaminek M, van Staden J. Methyl jasmonate down-regulates endogenous cytokinin levels in cotyledons of Cucurbita pepo (zucchini) seedlings. Physiol Plant. 2004;122:496–503. http://dx.doi.org/10.1111/j.1399-3054.2004.00425.x
  • 8. Shanklin J, Cahoon EB. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:611–641. http://dx.doi.org/10.1146/annurev.arplant.49.1.611
  • 9. Ueda J, Kato J. Isolation and identification of a senescence promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol. 1980;66:246–249. http://dx.doi.org/10.1104/pp.66.2.246
  • 10. Ueda J, Miyamoto K, Hashimoto M. Jasmonates promote abscission in bean petiole explants: its relationship to the metabolism of cell wall polysaccharides and cellulase activity. J Plant Growth Regul. 1996;15:189–195. http://dx.doi.org/10.1007/BF00190583
  • 11. He Y, Fukushige H, Hildebrand DF, Gan S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 2002;128:876–884. http://dx.doi.org/10.1104/pp.010843
  • 12. Hung KT, Kao CH. Promotive effect of jasmonates in the senescence of detached maize leaves. Plant Growth Regul. 1996;19:77–83. http://dx.doi.org/10.1007/BF00024405
  • 13. Hung KT, Kao CH. Involvement of lipid peroxidation in methyl jasmonate-promoted senescence on detached rice leaves. Plant Growth Regul. 1998;4:17–21. http://dx.doi.org/10.1023/A:1005988727235
  • 14. Yang Z, Ohlrogge JB. Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium and switchgrass and in Arabidopsis β-oxidation mutants. Plant Physiol. 2009;150:1981–1989. http://dx.doi.org/10.1104/pp.109.140491
  • 15. Cao S, Zheng Y, Wang K, Peng J, Rui H. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 2009;115:1458–1463. http://dx.doi.org/10.1016/j.foodchem.2009.01.082
  • 16. Botsoglou NA, Fletouris DJ, Papageorgiou GE, Vassilopoulos VN, Mantis AJ, Trakatellis AG. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J Agric Food Chem. 1994;42:1931–1937. http://dx.doi.org/10.1021/jf00045a019
  • 17. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biology of 4-hydroxynonenal, malondialdehyd and related aldehydes. Free Radic Biol Med. 1991;11:81–128. http://dx.doi.org/10.1016/0891-5849(91)90192-6
  • 18. Uchida K, Sakai K, Itakura K, Osawa T, Toyokuni S. Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N-(2-propenol)lysine in proteins. Arch Biochem Biophys. 1997;346:45–52. http://dx.doi.org/10.1006/abbi.1997.0266
  • 19. Jardine D, Antolovich M, Prenzler PD, Robards K. Liquid chromatography-mass spectrometry (LC-MS) investigation of the thiobarbituric acid reactive substances (TBARS) reaction. J Agric Food Chem. 2002;50:1720–1724. http://dx.doi.org/10.1021/jf011336a
  • 20. Horbowicz M, Grzesiuk A, Dębski H, Koczkodaj D, Saniewski M. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Crac Ser Bot. 2008;50:71–78.
  • 21. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. http://dx.doi.org/10.1139/o59-099
  • 22. Garcés R, Mancha M. One step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem. 1993;211:139–143. http://dx.doi.org/10.1006/abio.1993.1244
  • 23. Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acidreactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. http://dx.doi.org/10.1007/s004250050524
  • 24. Kim SL, Kim SK, Park CH. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res Int. 2004;37:319–327. http://dx.doi.org/10.1016/j.foodres.2003.12.008
  • 25. Los DA, Murata N. Structure and expression of fatty acid desaturases. Biochem Biophys Acta. 1998;394:3–15. http://dx.doi.org/10.1016/S0005-2760(98)00091-5
  • 26. Horbowicz M, Mioduszewska H, Koczkodaj D, Saniewski M. The effect of cis-jasmone, jasmonic acid and methyl jasmonate on accumulation of anthocyanins and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Soc Bot Pol. 2009;78:271–277. https://doi.org/10.5586/asbp.2009.035
  • 27. Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell. 1995;7:1071–1073. http://dx.doi.org/10.1105/tpc.7.7.1071
  • 28. Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E. The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant. 2010;3:78–90. http://dx.doi.org/10.1093/mp/ssp071
  • 29. Horbowicz M, Kosson R, Wiczkowski W, Koczkodaj D, Mitrus J. The effect of methyl jasmonate on accumulation of 2-phenylethylamine and putrescine in seedlings of common buckwheat (Fagopyrum esculentum). Acta Physiol Plant. 2011;33:897–903. http://dx.doi.org/10.1007/s11738-010-0616-5
  • 30. Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 2010;152:1940–1950. http://dx.doi.org/10.1104/pp.110.153114
  • 31. Avdiushko S, Croft KPC, Brown CC, Jackson DM, Hamilton-Kemp TR, Hildebrand D. Effect of volatile methyl jasmonate on the oxylipin pathway in tobacco, cucumber, and Arabidopsis. Plant Physiol. 1995;109:1227–1230. http://dx.doi.org/10.1104/pp.109.4.1227
  • 32. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol. 2006;14:776–792. http://dx.doi.org/10.1104/pp.106.079293
  • 33. Gardner HW. Biological roles and biochemistry of the lipoxygenase pathway. HortScience. 1995;30:197–205.
  • 34. Qiu Z, Guo J, Zhu A, Zhang L, Zhang M. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf. 2014;104:202–208. http://dx.doi.org/10.1016/j.ecoenv.2014.03.014
  • 35. Bandurska H, Stroiński A, Kubiś J. The effect of jasmonate on the accumulation of ABA, proline and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant. 2003;25:279–285. http://dx.doi.org/10.1007/s11738-003-0009-0
  • 36. Yan Z, Chen J, Li X. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf. 2013;98:203–209. http://dx.doi.org/10.1016/j.ecoenv.2013.08.019
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-3c9b89e1-5365-453b-b184-fad17ed030ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.