Effect of N-(p-ethoxycarbonylphenylmethyl)-p-isopropoxyphenylsuccinimide on the anticonvulsant action of four classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model

Jarogniew J. Łuszczki1,2, Ewa Marzęda1, Maria W. Kondrat-Wróbel2, Jan Wróbel2, Sergey L. Kocharov3, Magdalena Florek-Łuszczki4

1 Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
2 Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
3 Mndjoyan’s Institute of Fine Organic Chemistry, National Academy of Sciences, Yerevan, Republic of Armenia
4 Department of Public Health, Institute of Rural Health, Lublin, Poland

Abstract

Introduction and objective. The purpose of this study was to determine the effects of N-(p-ethoxycarbonylphenylmethyl)-p-isopropoxyphenylsuccinimide (ECPM-IPPS), a new succinimide derivative, on the protective action of four classical antiepileptic drugs (AEDs): carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT) and valproate (VPA) in the mouse maximal electroshock (MES)-induced tonic seizure model.

Materials and methods. Tonic hind limb extension (seizure activity) was evoked in adult male albino Swiss mice by a current (sine-wave, 25 mA, 500 V, 50 Hz, 0.2 s stimulus duration) delivered via ear-clip electrodes.

Results. ECPM-IPPS administered (i.p.) at a dose of 150 mg/kg significantly elevated the threshold for electroconvulsions in mice (P<0.05). Lower doses of ECPM-IPPS (50 and 100 mg/kg) had no significant impact on the threshold for electroconvulsions in mice. Moreover, ECPM-IPPS (100 mg/kg) did not significantly affect the anticonvulsant potency of CBZ, PB, PHT and VPA in the MES test in mice.

Conclusions. ECPM-IPPS elevated the threshold for electroconvulsions in mice in a dose-dependent manner. However, ECPM-IPPS (100 mg/kg) did not affect the anticonvulsant action of various classical AEDs in the mouse MES model, making the combinations of ECPM-IPPS with CBZ, PB, PHT and VPA neutral, from a preclinical point of view.

Key words

antiepileptic drugs, maximal electroshock-induced seizures, N-(p-ethoxycarbonyl-phenylmethyl)-p-isopropoxyphenylsuccinimide

INTRODUCTION

Accumulating evidence indicates that several succinimide derivatives have anticonvulsant properties in animal models of epilepsy [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. More specifically, it has been reported that N-(anilinomethyl)-p-isopropoxyphenylsuccinimide (AMIPPS) [2], N-pyridyl-substituted succinimides [3], N-(ortho-carboxyanilinomethyl)-p-isopropoxyphenylsuccinimide (o-CAMIPPS), N-(meta-carboxyanilino-methyl)-p-isopropoxyphenylsuccinimide (m-CAMIPPS), and N-(para-carboxyanilinomethyl)-p-isopropoxyphenylsuccinimide (p-CAMIPPS) [4], 3-cyclohexyl-succinimides [5], N-morpholinomethyl derivative of m-bromophenylsuccinimide [6], p-isopropoxyphenylsucinimide monohydrate (IPPS) [7], N-hydroxymethyl p-isopropoxyphenylsuccinimide (HMIPPS) [8], N-(p-acetylphenyl)-p-isopropoxyphenylsuccinimide (APIPPS) [9], N-morpholinomethyl-p-isopropoxyphenylsuccinimide (MMIPPS) [10], and 3-N-(p-isopropoxy-phenylsucinimido)-methylamino)-cinnamic acid (IPPSMA-CA) [11] exhibited potent anticonvulsant effects in the maximal electroshock-induced seizure (MES) test, recognized as the most widely employed animal seizure model for early identification of candidate anticonvulsant drugs [12, 13].

In our pilot study, we found that N-(p-ethoxycarbonylphenylmethyl)-p-isopropoxyphenylsuccinimide (ECPM-IPPS) exerted anticonvulsant properties by suppressing tonic-clonic seizures in the mouse MES test (unpublished data). This was reason enough to continue experiments in order to evaluate the effect of ECPM-IPPS on the threshold for electroconvulsions, and to assess its influence on the protective activity of four classical antiepileptic drugs (AEDs): carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) in the mouse MES-induced seizure model. The test evaluating the threshold for electroconvulsions (MEST) and the MES test in mice...
are both thought to be experimental models of tonic-clonic seizures and, to a certain extent, of partial convulsions with or without secondary generalization in humans [13]. In these seizure models the anticonvulsant potential of agents and compounds with anticonvulsant properties can be readily determined. Moreover, in these models one can evaluate the effects of tested compounds on various classical AEDs, which are effective in the suppression of tonic-clonic seizures in humans [13, 14].

MATERIALS AND METHODS

Animals and experimental conditions. Adult male Swiss mice weighing 22–26 g were kept in colony cages with free access to food and tap water, housed under standardized housing conditions with a natural light-dark cycle, at a temperature of 23±1°C with relative humidity of 55±5%, were used. After seven days of adaptation to laboratory conditions, the animals were randomly assigned to experimental groups, each comprised of eight mice. Each mouse was used only once and all tests were performed between 08:00–15:00. Procedures involving animals and their care were conducted in accordance with current European Community and Polish legislation on animal experimentation. Additionally, all efforts were made to minimize animal suffering and to use only the number of animals necessary to produce reliable scientific data. The experimental protocols and procedures described in the presented study were approved by the First Local Ethics Committee at the Medical University of Lublin (license No: 18/2006) and the Second Local Ethics Committee at the University of Life Sciences in Lublin (license Nos: 79/2009 and 15/2012), and complied with the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Drugs. The following drugs were used: N-[(p-ethoxycarbonylphenyl)methyl]-p-isopropoxyphenylsuccinimide (ECPM-IPPS – C23H26N2O5 – molecular weight = 410.460 (synthesized by Dr. S. L. Kocharov, Mondjoyan’s mice weighing 22–26 g were kept in colony cages with free access to food and tap water, housed under standardized housing conditions with a natural light-dark cycle, at a temperature of 23±1°C with relative humidity of 55±5%), were used. After seven days of adaptation to laboratory conditions, the animals were randomly assigned to experimental groups, each comprised of eight mice. Each mouse was used only once and all tests were performed between 08:00–15:00. Procedures involving animals and their care were conducted in accordance with current European Community and Polish legislation on animal experimentation. Additionally, all efforts were made to minimize animal suffering and to use only the number of animals necessary to produce reliable scientific data. The experimental protocols and procedures described in the presented study were approved by the First Local Ethics Committee at the Medical University of Lublin (license No: 18/2006) and the Second Local Ethics Committee at the University of Life Sciences in Lublin (license Nos: 79/2009 and 15/2012), and complied with the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Maximal electroshock seizure (MES) test. Electroconvulsions were induced by applying an alternating current (sine-wave, 50 Hz, 500 V) via ear-clip electrodes from a rodent shocker generator (type 221; Hugo Sachs Elektronik, Freiburg, Germany). The stimulus duration was 0.2 s and tonic hind limb extension was used as the endpoint. In this test, at least 4 groups of control mice, each consisting of 8 animals, were challenged with currents of varying intensities ranging between 4–8 mA so that 10–30%, 30–50%, 50–70% and 70–90% of animals exhibited the endpoint. After establishing the current intensity-effect curve (i.e., current intensity in mA vs. percentage of mice convulsing) for each dose of ECPM-IPPS tested, the electroconvulsive threshold was calculated according to the log-probit method of Litchfield and Wilcoxon [15]. The electroconvulsive threshold was expressed as the median current strength value (CS50 in mA) predicted to produce tonic hind limb extension in 50% of the animals tested. This experimental procedure was performed for various increasing doses of ECPM-IPPS (50, 100 and 150 mg/kg), until the threshold for electroconvulsions of ECPM-IPPS-injected animals was statistically different from that of the control animals. Only doses of ECPM-IPPS that did not significantly affect the seizure threshold in the MEST test were selected for testing in combination with four classical AEDs in the MES test (see below). This approach allowed the ruling-out of any contribution of the intrinsic anticonvulsant efficacy of ECPM-IPPS in the effects observed in combination with the AEDs in the MES test.
8–14 mg/kg, PB at doses ranging between 15–30 mg/kg and VPA at doses ranging between 225–325 mg/kg.

Statistics. Both CS₅₀ and ED₅₀ values with their 95% confidence limits were calculated by computer log-probit analysis according to Litchfield and Wilcoxon [15]. Statistical analysis of data from the MEST test was performed with one-way analysis of variance (ANOVA) followed by the post-hoc Tukey-Kramer test for multiple comparisons among four CS₅₀ values. Statistical analysis of data from the MES test was performed with log-probit analysis according to Litchfield and Wilcoxon [15] for two ED₅₀ values. Differences among values were considered statistically significant if P<0.05. All statistical tests were performed using commercially available GraphPad Prism version 4.0 for Windows (GraphPad Software, San Diego, CA, USA).

RESULTS

Influence of N-(p-ethoxycarbonylphenylmethyl)-p-isopropoxyphenylsuccinimide (ECPM-IPPS) on the threshold for electroconvulsions. ECPM-IPPS administered systemically (i.p., 60 min prior to the MEST test) at a dose of 150 mg/kg significantly elevated the threshold for electroconvulsions in mice (by 33%; P<0.05; Tab. 1). The experimentally-derived CS₅₀ values for animals receiving ECPM-IPPS at doses of 50 and 100 mg/kg did not significantly differ from that for control animals subjected to the MEST test (Tab. 1).

<table>
<thead>
<tr>
<th>Treatment (mg/kg)</th>
<th>CS<sub>50</sub> (mA)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>5.62±0.41</td>
<td>24</td>
</tr>
<tr>
<td>ECPM-IPPS (50)</td>
<td>5.94±0.43</td>
<td>24</td>
</tr>
<tr>
<td>ECPM-IPPS (100)</td>
<td>6.40±0.47</td>
<td>16</td>
</tr>
<tr>
<td>ECPM-IPPS (150)</td>
<td>7.45±0.45*</td>
<td>24</td>
</tr>
<tr>
<td>F (3,76)</td>
<td>3.10; P = 0.0355</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as median current strengths (CS₅₀ values in mA ± S.E.) required to produce tonic hindlimb extension in 50% of animals tested in the maximal electroshock-induced seizure threshold test. ECPM-IPPS was administered (i.p. 60 min before the test). Statistical evaluation of data was performed with the log-probit method [15] and one-way ANOVA followed by post-hoc Tukey-Kramer test for multiple comparisons.

Effects of N-(p-ethoxycarbonylphenylmethyl)-p-isopropoxyphenylsuccinimide (ECPM-IPPS) on the tonic protection of carbamazepine, phenobarbitual, phenytoin and valproate in the mouse maximal electroshock seizure model. All investigated classical AEDs (CBZ, PB, PHT and VPA) administered alone exhibited a definite anticonvulsant activity in the MES test (Tab. 2). When ECPM-IPPS (100 mg/kg) was co-administered with CBZ, PB, PHT and VPA, it did not significantly potentiate the anticonvulsant action of the studied AEDs in the MES test. The experimentally-derived ED₅₀ values for the AEDs in combination with ECPM-IPPS (100 mg/kg) did not considerably differ from those ED₅₀ values as documented for the AEDs administered separately (Tab. 2).

<table>
<thead>
<tr>
<th>Treatment (mg/kg)</th>
<th>CS<sub>50</sub> (mA)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBZ + Vehicle</td>
<td>10.55 (8.83–12.60)</td>
<td>24</td>
</tr>
<tr>
<td>CBZ + ECPM-IPPS (100)</td>
<td>9.12 (7.28–10.70)</td>
<td>12</td>
</tr>
<tr>
<td>PB + Vehicle</td>
<td>23.90 (20.20–28.26)</td>
<td>16</td>
</tr>
<tr>
<td>PB + ECPM-IPPS (100)</td>
<td>18.17 (14.97–22.07)</td>
<td>16</td>
</tr>
<tr>
<td>PHT + Vehicle</td>
<td>11.94 (10.15–13.13)</td>
<td>24</td>
</tr>
<tr>
<td>PHT + ECPM-IPPS (100)</td>
<td>10.55 (8.83–12.60)</td>
<td>16</td>
</tr>
<tr>
<td>VPA + Vehicle</td>
<td>283.3 (262.5–305.9)</td>
<td>10</td>
</tr>
<tr>
<td>VPA + ECPM-IPPS (100)</td>
<td>258.2 (237.4–280.8)</td>
<td>10</td>
</tr>
</tbody>
</table>

Results are presented as median effective doses (ED₅₀ in mg/kg, with 95% confidence limits in parentheses) of AEDs, protecting 50% of animals tested against maximal electroshock (MES)-induced seizures. All AEDs were administered (i.p. PHT – 120 min, PB – 60 min, CBZ and VPA – 30 min. prior to the MEST test. ECPM-IPPS was administered (i.p. at 60 min before the MEST test. Statistical analysis of data was performed with log-probit method according to Litchfield and Wilcoxon [15]. CBZ – carbamazepine; PB – phenobarbitual; PHT – phenytoin; VPA – valproate.

DISCUSSION

Results indicate that ECPM-IPPS dose-dependently elevated the threshold for electroconvulsions in mice. However, ECPM-IPPS at the sub-protective dose of 100 mg/kg (i.e., the dose that by itself did not significantly affect the threshold for electroconvulsions) had no impact on the protective action of the studied AEDs (CBZ, PB, PHT and VPA) against MES-induced tonic seizures in mice, thus indicating neutral interactions between these drugs in the mouse MES model.

Comparing the effects produced by ECPM-IPPS in this study with those reported earlier for AMIPPS, IPPS, o-CAMIPPS, m-CAMIPPS, p-CAMIPPS, HMIPPS, MMIPPS, APIPPS and IPPSMA-CA, it can be ascertained that ECPM-IPPS had no impact on the anticonvulsant properties of the four classical AEDs. Previously, we have documented that p-isopropoxyphenylsuccinimide monohydrate (IPPS) potentiated the anticonvulsant action of PHT and VPA, but not that of CBZ and PB [7]. Moreover, AMIPPS, APIPPS, HMIPPS and MMIPPS significantly enhanced the anticonvulsant action of PB and VPA, but not that of CBZ and PHT in the mouse MES model [2, 8, 9, 10]. On the other hand, o-CAMIPPS attenuated the anticonvulsant action of CBZ and had no significant impact on the protective action of PHT, PB and VPA against MES-induced seizures in mice [4]. With regard to m-CAMIPPS, p-CAMIPPS and IPPSMA-CA, all these succinimide derivatives had no impact on the protective action of classical AEDs in the mouse MES model [4, 11]. Of note, the anticonvulsant profile of ECPM-IPPS when combined with classical AEDs is similar to that reported earlier for m-CAMIPPS, p-CAMIPPS and IPPSMA-CA in the mouse MES model.

Although ECPM-IPPS significantly raised the threshold for maximal electroconvulsions in mice, it did not affect the protective action of the four different classical AEDs in the mouse MES model. Thus, one can ascertain that ECPM-IPPS possesses the anticonvulsant action against electrically-evoked tonic seizures in experimental animals, but this action is too weak to enhance the protective activity.
of different classical AEDs in the mouse MES-induced tonic seizure model. Perhaps ECPM-IPPS will be effective in the suppression of clonic or limbic seizures in other experimental models of epilepsy. To confirm this hypothesis, more advanced studies are required.

Finally, based on the results from this study, one can ascertain that the co-administration of ECPM-IPPS with various classical AEDs (CBZ, PB, PHT and VPA) was neutral in the mouse MES model. Additionally, ECPM-IPPS had no impact on acute adverse effect profiles of classical AEDs, as determined in the passive avoidance, grip-strength and chimney tests in mice.

Acknowledgments
This study was supported by grants from the Medical University of Lublin and Institute of Rural Health in Lublin, Poland. Professor J. J. Łuszczki is a Member of the Academy of Young Scientists at the Polish Academy of Sciences in Warsaw, Poland. The authors are grateful for the generous gifts of carbamazepine from Polpharma S. A. in Starogard Gdański, Poland, and valproate from ICN-Polfa S. A., Rzeszów, Poland.

Disclosure of conflicts of interest
The authors have no disclosures to declare.

REFERENCES