Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 82 | 4 |
Tytuł artykułu

Arbuscular mycorrhiza of Deschampsia cespitosa (Poaceae) at different soil depths in highly metal-contaminated site in southern Poland

Treść / Zawartość
Warianty tytułu
Języki publikacji
This study presents root colonization of Deschampsia cespitosa growing in the immediate vicinity of a former Pb/Zn smelter by arbuscular mycorhizal fungi (AMF) and dark septated endophytes (DSE) at different soil depths. AMF spores and species distribution in soil profile were also assessed. Arbuscular mycorrhiza (AM) and DSE were found in D. cespitosa roots at all investigated soil levels. However, mycorrhizal colonization in topsoil was extremely low with sporadically occurring arbuscules. AM parameters: frequency of mycorrhization of root fragments (F%), intensity of root cortex colonization (M%), intensity of colonization within individual mycorrhizal roots (m%), and arbuscule abundance in the root system (A%) were markedly higher at 20–40, 40–60 cm soil levels and differed in a statistically significant manner from AM parameters from 0–10 and 10–20 cm layers. Mycorrhizal colonization was negatively correlated with bioavailable Cd, Pb and Zn concentrations. The number of AMF spores in topsoil was very low and increased with soil depth (20–40 and 40–60 cm). At the study area spores of three morphologically distinctive AMF species were found: Archaeospora trappei, Funneliformis mosseae and Scutellospora dipurpurescens. The fourth species Glomus tenue colonized roots of D. cespitosa and was observed in the root cortex at 20–40 and 40–60 soil depth, however, its spores were not found at the site.
Opis fizyczny
  • Department of Plant Systematics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Plant Pathology, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin, Poland
  • Department of Plant Physiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Plant Systematics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
  • Department of Plant Physiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
  • 1. Harrison MJ. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol. 1999;50(1):361–389.
  • 2. Smith SE, Read DJ. Mycorrhizal symbiosis. San Diego CA: Academic Press; 2008.
  • 3. Zubek S, Turnau K, Błaszkowski J. Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Soc Bot Pol. 2008;77(2):149–156.
  • 4. Bothe H, Regvar M, Turnau K. Arbuscular mycorrhiza, heavy metal, and salt tolerance. In: Sherameti I, Varma A, editors. Soil heavymetals. Berlin: Springer; 2010. p. 87–111. (vol 19).
  • 5. Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M. Arbuscular mycorrhizas enhance nutrient uptake in different wheatgenotypes at high salinity levels under field and greenhouse conditions. CR Biol. 2011;334(7):564–571.
  • 6. Rillig MC. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett. 2004;7(8):740–754. http://dx.doi. org/10.1111/j.1461-0248.2004.00620.x
  • 7. Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species. Chemosphere. 2008;73(5):643–649. http://
  • 8. Zheljazkov VD, Craker LE, Xing B, Nielsen NE, Wilcox A. Aromatic plant production on metal contaminated soils. Sci Total Env. 2008;395(2–3):51– 62.
  • 9. Yang P, Mao R, Shao H, Gao Y. The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. C R Biol. 2009;332(6):558–566.
  • 10. Płaza GA, Nałęcz-Jawecki G, Pinyakong O, Illmer P, Margesin R. Ecotoxicological and microbiological characterization of soils from heavy-metal- andhydrocarbon-contaminated sites. Env Monit Assess. 2010;163(1–4):477–488.
  • 11. Száková J, Tlustoš P, Pavlíková D, Hanč A, Batysta M. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions. Chem Pap. 2007;61(4):276–281. http://dx.doi. org/10.2478/s11696-007-0033-4
  • 12. Epelde L, Becerril JM, Barrutia O, González-Oreja JA, Garbisu C. Interactions between plant and rhizosphere microbial communities ina metalliferous soil. Env Pollut. 2010;158(5):1576–1583.
  • 13. Kapusta P, Szarek-Łukaszewska G, Stefanowicz AM. Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland). Env Pollut. 2011;159(6):1516–1522.
  • 14. Karczewska A, Bogda A, Gałka B, Szulc A, Czwarkiel D, Duszyńska D. Natural and antropogenic soil enrichment in heavy metals in areas of formermetallic ore mining in the Sudety Mts. Pol J Soil Sci. 2006;39:131–142.
  • 15. Siebielec G, Stuczyński T, Korzeniowska-Pucułek R. Metal bioavailability in long-term contaminated Tarnowskie Gory Soils. Pol J Env. Stud.2006;15:121–129.
  • 16. Gucwa-Przepióra E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyżak J, Kita A, et al. Effect of chemophytostabilization practices onarbuscular mycorrhiza colonization of Deschampsia cespitosa ecotypeWaryński at different soil depths. Env Pollut. 2007;150(3):338–346.
  • 17. Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg JM, Pogrzeba M, et al. The use of indigenous plant species and calciumphosphate for the stabilization of highly metal-polluted sites in southernPoland. Plant Soil. 2005;273(1–2):291–305.
  • 18. Gildon A, Tinker PB. Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. New Phytol. 1983;95(2):247–261.
  • 19. del Val C, Barea JM, Azcon-Aguilar C. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl EnvMicrobiol. 1999;65(2):718–723.
  • 20. Tullio M, Pierandrei F, Salerno A, Rea E. Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-pollutedand unpolluted soil. Biol Fertil Soils. 2003;37(4):211–214.
  • 21. Brej T. Heavy metal tolerance in Agropyron repens (L.) P. Bauv. populations from the Legnica copper smelter area, Lower Silesia. Acta Soc Bot Pol. 1998;67(3–4):325–333.
  • 22. Gucwa-Przepióra E, Turnau K. Arbuscular mycorrhiza and plant succesion on zinc smelter spoil heap in Katowice-Wełnowiec. Acta Soc Bot Pol.2001;70(2):153–158.
  • 23. Turnau K, Orlowska E, Ryszka P, Zubek S, Anielska T, Gawronski S, et al. Role of micorrhizal fungi in phytoremediation and toxicity monitoring ofheavy metal rich industrial wastes in southern Poland. In: Twardowska I,Allen HE, Häggblom MM, Stefaniak S, editors. Soil and water pollutionmonitoring, protection and remediation. Netherlands: Springer; 2006.p. 533–551. (vol 69).
  • 24. von Frenckell-Insam BAK, Hutchinson TC. Occurrence of heavy metal tolerance and co-tolerance in Deschampsia cespitosa (L.) Beauv. fromeuropean and canadian populations. New Phytol. 1993;125(3):555–564.
  • 25. Gaur A, Adholeya A. Prospects of arbuscural mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci. 2004;86:528–534.
  • 26. Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F. Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation? Env Pollut. 2006;144(3):976–984.
  • 27. Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi-Pearson V. Role of arbuscular mycorrhiza and associated microorganisms in phytoremediationof heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R,editors. Trace elements in the environment. London: CRC Press; 2005. p. 235–252.
  • 28. Turnau K, Anielska T, Ryszka P, Gawroński S, Ostachowicz B, Jurkiewicz A. Establishment of arbuscular mycorrhizal plants originating from xerothermicgrasslands on heavy metal rich industrial wastes – new solutionfor waste revegetation. Plant Soil. 2008;305(1–2):267–280.
  • 29. Turnau K, Ryszka P, Wojtczak G. Metal tolerant mycorrhizal plants: a review from the perspective on industrial waste in temperate region.In: Koltai H, Kapulnik Y, editors. Arbuscular mycorrhizas: physiologyand function. Netherlands: Springer; 2010. p. 257–276.
  • 30. Guadarrama P, Álvarez-Sánchez FJ. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz,Mexico. Mycorrhiza. 1999;8(5):267–270.
  • 31. Joner E, Leyval C. Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils. 2001;33(5):351–357.
  • 32. Orłowska E, Zubek S, Jurkiewicz A, Szarek-Łukaszewska G, Turnau K. Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L.(Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calaminespoil mounds. Mycorrhiza. 2002;12(3):153–159.
  • 33. Mejstrik VK. Vesicular-arbuscular mycorrhizas of the species of a Molinietum coeruleae L. I. association: the ecology. New Phytol. 1972;71(5):883–890.
  • 34. Rillig MC, Field CB. Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil.2003;254(2):383–391.
  • 35. Asghari HR, Chittleborough DJ, Smith FA, Smith SE. Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching throughsoil cores. Plant Soil. 2005;275(1–2):181–193.
  • 36. Kabir Z, O’Halloran IP, Widden P, Hamel C. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza. 1998;8(1):53–55.
  • 37. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A. Community structure of arbuscular mycorrhizal fungi at different soil depthsin extensively and intensively managed agroecosystems. New Phytol.2005;165(1):273–283.
  • 38. Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 1970;55(1):158–160. http://
  • 39. Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un systéme radiculaire. Recherche de méthodesd’estimationayant une signification fonctionelle. In: Gianinazzi-Pearson V,Gianinazzi S, editors. Physiological and genetical aspects of mycorrhizae.Paris: INRA; 1986. p. 217–221.
  • 40. Gerdemann JW, Nicolson TH. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc.1963;46(2):235–244.
  • 41. Omar MB, Bollan L, Heather W. A permanent mounting medium for fungi. Bull Br Mycol Soc. 1979;13:31–32.
  • 42. Błaszkowski J. Glomeromycota. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2012.
  • 43. Lityński T, Jurkowska H, Gorlach E. Analiza chemiczno-rolnicza. Warsaw: Polish Scientific Publishers PWN; 1976.
  • 44. Houba VJG, Van der Lee JJ, Novozamsky I. Soil analysis procedures, other procedures (soil and plant analysis, part 5b). Wageningen: WageningenAgricultural University; 1995.
  • 45. Schüßler A, Walker C. The Glomeromycota: a species list with new families and genera [Internet]. 2013 [cited 2013 Apr 10]; Available from:
  • 46. Pattinson GS, Sutton BG, McGee PA. Leachate from a waste disposal centre reduces the initiation of arbuscular mycorrhiza, and spreadof hyphae in soil. Plant Soil. 2000;227(1–2):35–45.
  • 47. Giovannetti M, Avio L, Sbrana C. Fungal spore germination and pre-symbiotic mycelial growth – physiological and genetic aspects. In: Koltai H, Kapulnik Y, editors. Arbuscular mycorrhizas: physiology and function. Berlin: Springer; 2010. p. 3–32. http://dx.doi. org/10.1007/978-90-481-9489-6_1
  • 48. Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Violacalaminaria and effect of these fungi on heavy metal uptake by clover.Mycorrhiza. 2001;10(4):161–168.
  • 49. Nadgórska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza- Raszka A. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Env Sci Pollut Res. 2013;20(2):1124–1134.
  • 50. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. Rev Env Contam Toxicol. 2011;213:113–136.
  • 51. Trigueros D, Mingorance MD, Rossini Oliva S. Evaluation of the ability of Nerium oleander L. to remediate Pb-contaminated soils. J GeochemExplor. 2012;114:126–133.
  • 52. Colpaert JV, Muller LAH, Lambaerts M, Adriaensen K, Vangronsveld J. Evolutionary adaptation to Zn toxicity in populations ofSuilloid fungi. New Phytol. 2004;162(2):549–559.
  • 53. Pawlowska TE, Charvat I. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Env Microbiol. 2004;70(11):6643–6649.
  • 54. Orłowska E, Ryszka P, Jurkiewicz A, Turnau K. Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved inphytostabilisation of zinc wastes. Geoderma. 2005;129(1–2):92–98. http://
  • 55. Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F. Community structure of arbuscular mycorrhizal fungi associated to Veronicarechingeri at the Anguran zinc and lead mining region. Env Pollut.2008;156(3):1277–1283.
  • 56. Joner EJ, Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae/ Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 1997;135(2):353–360.
  • 57. Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S. Targeted proteomics to identify cadmium-induced proteinmodifications in Glomus mosseae-inoculated pea roots. New Phytol.2003;157(3):555–567.
  • 58. Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, et al. Molecular changes in Pisum sativum L. rootsduring arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza.2005;16(1):51–60.
  • 59. Chen B, Shen H, Li X, Feng G, Christie P. Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated withzinc. Plant Soil. 2004;261(1–2):219–229. B:PLSO.0000035538.09222.ff
  • 60. Mandyam K, Jumpponen A. Seeking the elusive function of the rootcolonising dark septate endophytic fungi. Stud Mycol. 2005;53(1):173–189.
  • 61. Jumpponen A. Dark septate endophytes – are they mycorrhizal? Mycorrhiza. 2001;11(4):207–211.
  • 62. Usuki F, Narisawa K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizalplant, Chinese cabbage. Mycologia. 2007;99(2):175–184.
  • 63. Zarei M, Saleh-Rastin N, Jouzani GS, Savaghebi G, Buscot F. Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. Eur J Soil Biol. 2008;44(4):381–391.
  • 64. Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, et al. Molecular diversity of arbuscular mycorrhizal fungi in relation tosoil chemical properties and heavy metal contamination. Env Pollut.2010;158(8):2757–2765.
  • 65. Pawlowska TE, Błaszkowski J, Rühling Å. The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza. 1997;6(6):499–505.
  • 66. Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol.2010;44(3):213–218.
  • 67. Ortega-Larrocea MP, Xoconostle-Cázares B, Maldonado-Mendoza IE, Carrillo-González R, Hernández-Hernández J, Garduño MD, et al. Plantand fungal biodiversity from metal mine wastes under remediation atZimapan, Hidalgo, Mexico. Env Pollut. 2010;158(5):1922–1931.
  • 68. Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D. Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizingzinc wastes in southern Poland. Mycorrhiza. 2001;10(4):169–174.
  • 69. Whitfield L, Richards AJ, Rimmer DL. Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichusin northern England. Mycorrhiza. 2004;14(1):55–62.
  • 70. Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Env Pollut.2011;159(12):3730–3738.
  • 71. Ietswaart JH, Griffioen WAJ, Ernst WHO. Seasonality of VAM infection in three populations of Agrostis capillaris (Gramineae) on soil with orwithout heavy metal enrichment. Plant Soil. 1992;139(1):67–73.
  • 72. Griffioen WAJ. Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza. 1994;4(5):197–200.
  • 73. Griffioen WAJ, Ietswaart JH, Ernst WHO. Mycorrhizal infection of an Agrostis capillaris population on a copper contaminated soil. Plant Soil. 1994;158(1):83–89.
  • 74. Błaszkowski J. Polish Glomales. Mycorrhiza. 1994;4(4):173–182. http://
  • 75. Rabatin SC. Seasonal and edaphic variation in vesicular-arbuscular mycorrhizal infection of grasses by Glomus tenuis. New Phytol. 1979;83(1):95–102.
  • 76. Błaszkowski J. Comparative studies of the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland.Acta Mycol. 1993;28:93–140.
  • 77. Turnau K, Mesjasz-Przybylowicz J. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae fromultramafic soils in South Africa. Mycorrhiza. 2003;13(4):185–190.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.