Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 4 |
Tytuł artykułu

Inhibitory effect of newly-synthesized chalcones on hemolytic activity of methicillin-resistant Staphylococcus aureus

Warianty tytułu
Języki publikacji
Pathogenicity of methicillin-resistant Staphylococcus aureus (MRSA) is associated with a broad spectrum of virulence factors, amongst which is α-hemolysin. The aim of this study was to investigate the effect of three newly-synthesized chalcones (1,3- Bis-(2-hydroxy-phenyl)- propenone, 3-(3-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone and 3-(4-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone) on α-hemolysin production of clinical isolates of MRSA. Subinhibitory concentrations of the tested compounds reduced hemolytic activity of MRSA strains, with almost complete abolishment of hemolysis at concentrations in the range of 1/2–1/4 x MIC (25–12.5 μg/ml). In conclusion, newly-synthesized chalcones tested in this study showed potent inhibitory activity on α-hemolysin production of multiresistant and genetically diverse MRSA strains.
Słowa kluczowe
Opis fizyczny
  • Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Department of Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark
  • Department of Bacteriology, Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
  • Alcaraz L.E., S.E.Blanco, O.N. Puig, F.Tomas and F.H. Ferretti. 2000. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J. Theor. Biol. 205: 231–240.
  • Bignardi G.E., N. Woodford, A. Chapman, A.P. Johnson and D.C.E. Speller. 1996. Detection of the mec-A and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillin resistance. J. Antimicrob. Chemoth. 37: 53–63.
  • Boye K., M.D. Bartels, I.S. Andersen, J.A. Møller and H. Westh. 2007. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin. Microbiol. Infect. 13: 725–727.
  • Božić D.D., M. Milenković, B. Ivković and I. Ćirković. 2014. Newly-synthesized chalcones-inhibition of adherence and biofilm formation of methicillin-resistant Staphylococcus aureus. Braz. J. Microbiol. 45: 263–270.
  • Brakstad O.G., K. Aabakk and J.A. Maeland. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30: 1654–1660.
  • Bubeck Wardenburg J., T. Bae, M. Otto, F.R. DeLeo and O. Schneewind. 2007. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 13: 1405–1406.
  • Burlak C., C.H. Hammer, M.A. Robinson, A.R. Whitney, M.J. McGavin, B.N. Kreiswirth and F.R. DeLeo. 2007. Global analysis of community associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell. Microbiol. 9: 1172–1190.
  • Cegelski L., G.R. Marshall, G.R. Eldridge and S.J. Hultgren. 2008. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6: 17–27.
  • Clinical Laboratory Standards Institute (CLSI). 2007. Performance standards for antimicrobial susceptibility testing, 17th Informational Supplement. Approved Standard. CLSI document M100-S17. Wayne, PA, USA.
  • Cushnie T.P. and A.J. Lamb. 2011. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 38: 99–107.
  • Escaich S. 2008. Antivirulence as a new antibacterial approach for chemotherapy. Curr. Opin. Chem. Biol. 12: 400–408.
  • Fukai T., A. Marumo, K. Kaitou, T. Kanda, S. Terada and T. Nomura. 2002. Antimicrobial activity of licorice flavonoids against methicillin-resistant Staphylococcus aureus. Fitoterapia 73: 536–539.
  • Haraguchi H., K. Tanimoto, Y. Tamura, K. Miyutani and T. Kinoshita. 1998. Mode of antibacterial action of retrochalcones from Glycyrrhiza infiltrata. Phytochemistry 48: 125–129.
  • Harmsen D., H. Claus, W. Witte, J. Rothganger, D. Turnwald and U. Vogel. 2003. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 41: 5442–5448.
  • Kromann H., M. Larsen, T. Boesen, K. Schønning and S.F. Nielsen. 2004. Synthesis of prenylated benzaldehydes and their use in the synthesis of analogues of licochalcone A. Eur. J. Med. Chem. 39: 993–1000.
  • Lina G., F. Boutite, A. Tristan, M. Bes, J. Etienne and F. Vandenesch. 2003. Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl. Environ. Microbiol. 69: 18–23.
  • Montgomery C.P., S. Boyle-Vavra, P.V. Adem, J.C. Lee, A.N. Husain, J. Clasen and R.S. Daum. 2008. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J. Infect. Dis. 198: 561–570.
  • Mori A., C. Nishino, N. Enoki and S. Tawata. 1987. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 26: 2231–2234.
  • Nowakowska Z. 2007. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 42: 125–137.
  • Ohemeng K.A., C.F. Schwender, K.P. Fu and J.F. Barrett. 1993. DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorg. Med. Chem. Lett. 3: 225–230.
  • Parimon T., Z. Li and D.D. Bolz. 2013. Staphylococcus aureus Alpha-hemolysin Promotes Platelet-Neutrophil Aggregate Formation. J. Infect. Dis. 208(5): 761–70.
  • Qiu J., Y. Jiang, L. Xia, H. Xiang, H. Feng, S. Pu, N. Huang, L. Yu and X. Deng. 2010a. Subinhibitory concentrations of licochalcone A decrease alpha-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Lett. Appl. Microbiol. 50: 223–229.
  • Qiu J., D. Wang, H. Xiang, H. Feng, Y. Jiang, L. Xia, J. Dong, J. Lu, L. Yu and X. Deng. 2010b. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates. PLoS One. 5: e9736.
  • Ragle E.B. and J. Bubeck Wardenburg. 2009. Anti-Alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect. Immun. 77: 2712–2718.
  • Rowe G.E. and R.A. Welch. 1994. Assays of hemolytic toxins. Methods. Enzymol. 235: 657–667.
  • Sato M., H. Tsuchiya, T. Miyazaki, S. Fujiwara, R. Yamaguchi, H. Kureshiro and M. Iinuma. 1996. Antibacterial activity of hydroxychalcone against methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 6: 227–231.
  • Talia J.M., N.B. Debattista and N.B. Pappano. 2011. New antimicrobial combinations: substituted chalcones-oxacillin against methicillin resistant Staphylococcus aureus. Braz. J. Microbiol. 42: 470–475.
  • Zhou T., D. Xumin and J. Qiu. 2012. Antimicrobial activity of Licochalcone E against Staphylococcus aureus and its impact on the production of staphylococcal alpha-toxin. J. Microbiol. Biotechnol. 22: 800–805.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.