PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 4 |
Tytuł artykułu

Physiology and molecular phylogeny of bacteria isolated from alkaline distillery lime

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of the research on the number, taxonomic composition, and biochemical properties of bacterial strains isolated from the alkaline Solvay distillery lime, deposited at the repository in Janikowo (central Poland). Fifteen strains out of 17 were facultative alkaliphiles and moderate halophiles, and two were alkalitolerants and moderate halophiles. The number of aerobic bacteria cultured in alkaline lime was approximately 10⁵ CFU ml⁻¹, and the total number of bacteria was 10⁷ cells g⁻¹. According to 16S rRNA gene sequence analysis, nine strains belonged to the genus Bacillus, six to the genus Halomonas, one to the genus Planococcus, and one to the genus Microcella. Strains that hydrolyse starch and protein were the most numerous. Esterase (C4) and esterase lipase (C8) were detected in the majority of bacterial strains. Twelve strains exhibited α-glucosidase activity and nine, naphtol-AS-BI-phosphohydrolase activity. The present study proves that alkaliphilic bacteria of this type may constitute a source of potentially useful extremozymes.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
64
Numer
4
Opis fizyczny
p.369-377,fig.,ref.
Twórcy
  • Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Torun, Torun, Poland
autor
  • Department of Microbiology, Eotvos Lorand University, Budapest, Hungary
autor
  • Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Torun, Torun, Poland
autor
  • Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
Bibliografia
  • Amouric A., P.P. Liebgott, M. Joseph, C. Brochier-Armanet and J. Lorquin. 2014. Halomonas olivaria sp. nov., a moderately halophilic bacterium isolated from olive-processing effluents. Int. J. Syst. Evolut. Microbiol. 64: 46–54.
  • Antony C.P., D. Kumaresan, S. Hunger, H.L. Drake, J.C. Murrell, and Y.S. Shouche. 2013. Microbiology of Lonar Lake and other soda lakes. ISME 7: 468–476.
  • Bourlieu C., F. Rousseau, V. Briard-Bion, M.N. Madec and S. Bouhallab. 2012. Hydrolysis of native milk fat globules by microbial lipases: Mechanisms and modulation of interfacial quality. Food Res. Int. 49: 533–544.
  • Chávez R, F. Fierro, R.O. García-Rico and F. Laich. 2011. Mold-fermented foods: Penicillium spp. as ripening agents in the elaboration of cheese and meat products, pp. 73–98. In: Leitão, A.L. (ed.). Mycofactories. Bentham Science Publishers Ltd., Lisbona.
  • Collins M.D., M.B. Lund, J.A.E. Farrow and K.H. Schleifer. 1983. Chemotaxonomic study of an alkaliphilic bacterium Exigenobacterium aurantiacum gen. nov., sp. nov. J. Gen. Microb. 129: 2037–2042.
  • Duckworth A.W., W.D. Grant, B.E. Jones and R. van Steenburgen. 1996. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microb. Ecol. 9: 181–191.
  • Ellis R.P., A.J. Morgan, A.J. Weightman and J.C. Fry. 2003. Cultivation dependent and – independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 3223–3230.
  • Felföldi T., B. Somogyi, K. Márialigeti and L. Vörös. 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol. 68: 385–395.
  • Foti M.S., S. Ma, D.Y. Sorokin, J.L. Rademaker , J.G. Kuenen and G. Muyzer. 2006. Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microb. Ecol. 56: 95–101.
  • Fujinami S. and M. Fujisawa. 2010. Industrial applications of alkaliphiles and their enzymes – Past, present and future. Environ. Technol. 31: 845–856.
  • Gerasimenko L.M., L.L. Mityushina and B.B. Namsaraev. 2003. Microcoleus mats from alkaliphilic and halophilic communities. Microbiol. 72: 71–79.
  • Grant W.D. and S. Heaphy. 2010. Metagenomics and recovery of enzyme genes from alkaline saline environments. Environ. Technol. 31: 1135–1143.
  • Gupta R. P. Rathi and S. Bradoo. 2003. Lipase mediated upgradation of dietary fats and oils. Crit. Rev. Food Sci. Nutr. 43: 635–644.
  • Hobbie J.E., R.J. Daley and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.
  • Horikoshi K. 1991. Microorganisms in alkaline environments. Kodansha – VCH, Tokyo.
  • Horikoshi K. 1999. Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735–750.
  • Ito S. 1997. Alkaline cellulases from alkaliphilic Bacillus: Enzymatic properties, genetics and applications to detergents. Extremophiles 1: 61–66.
  • Jeliński T., O. Shyichuk and D. Ziółkowska. 2011. Alkalization properties of selected wastes from soda production by Solvay method. Arch. Waste Manag. 13: 21–28.
  • Jiang Z., M. Yu, L. Ren, H. Zhou and H.P. Wei. 2013. Synthesis of phytosterol esters catalysed by immobilized lipase in organic media Cuihua Xuebao. Chin. J. Cat. 34: 2255–2262.
  • Jones B.E., W.D. Grant, A.W. Duckworth and G.G. Owenson. 1998. Microbial diversity of soda lakes. Extremophiles 2: 91–200.
  • Kageyama A., Y. Takahashi, Y. Matsuo, H. Kasai, Y. Shizuri and S. Omura. 2007. Microbacterium sediminicola sp. nov. and Microbacterium marinilacus sp. nov., isolated from marine environments International. J. Syst. Evol. Microbiol. 57: 2355–2359.
  • Kim K.K., K.C. Lee, H.M. and J.S. Lee. 2010. Halomonas stevensii sp. nov., Halomonas hamiltonii sp. nov. and Halomonas johnsoniae sp. nov., isolated from a renal care centre. Int. J. Syst. Evol. Microbiol. 60: 369–377.
  • Kim O.S., Y.I. Cho, K. Lee, S.H. Yoon, M. Kim, H. Na, S.C. Park, Y.S. Jeon, J.H. Lee, H. Yi, S. Won and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716–721.
  • Klomklao S., S. Benjakul and B.K. Simpson. 2012. Seafood enzymes: Biochemical properties and their impact on quality, p. 271. In: Simpson, B.K. (ed.). Food Biochemistry and Food Processing, 2nd edn. John Willey & Sons, New Delhi, India.
  • Krulwich T.A. 1986. Bioenergetics of alkalophilic bacteria. J. Membrane Biol. 89: 113–25.
  • Maron P.A., H. Schimann, L. Ranjard, E. Brothiera, A.M. Domenacha, R. Lensi and S. Nazaret. 2006. Evaluation of quantitative and qualitative recovery of bacterial communities from different soil types by density gradient centrifugation. Europ. J. Soil Biol. 42: 65–73.
  • Máthé I, A.K. Borsodi, E.M. Tóth, T. Felföldi, L. Jurecska, G. Krett, Z. Kelemen, E. Elekes, K. Barkács and K. Márialigeti. 2014. Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles 18: 501–514.
  • Nielsen P., D. Fritze and E.G. Priest. 1995. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiol. 141: 1745–1761.
  • Ntougias S., G.I. Zervakis, C. Ehaliotis, N. Kavroulakis and K.K. Papadopoulou. 2006. Ecophysiology and molecular phylogeny of bacteria isolated from alkaline two-phase olive mill wastes. Res. Microb. 157: 376–385.
  • Polz M.F. and C.M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64: 3724–3730.
  • Pruesse E., J. Peplies and F.O. Glöckner. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829.
  • Qazi J.I. 2013. Biotechnological potential and conservatory of extremophiles from climatically wide ranged developing countries: Lesson from Pakistan. Crit. Rev. Microbiol. 39: 1–8.
  • Radojevic M. and V.N. Bashkin. 2006. Practical Environmental Analysis. RSC Publishing, London.
  • Raval V.H., S. Pillai, C.M. Raval and S.P. Singh. 2014. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Proc. Bioch. 49: 955–962.
  • Regional Inspectorate for Environmental Protection. 2013. State of the environment of the Kuyavian-Pomeranian voivodeship, p. 186, (in Polish). Library of the Environmental Monitoring, Bydgoszcz. Ritz K. 2007. The Plate Debate: Cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol. Ecol. 60: 358–362.
  • Romano I., B. Nicolaus, L. Lama, M.C. Manca and A. Gambacorta. 1996. Characterization of a haloalkalophilic strictly aerobic bacterium, isolated from Pantelleria island. Syst. Appl. Microbiol. 19: 326–333.
  • Romano I., Giordano A., Lama L., Nicolaus B., Gambacorta A. 2003. Planococcus rifietensis sp. nov, isolated from algal mat collected from a sulfurous spring in Campania (Italy). Syst. Appl. Microbiol. 26: 357–366
  • Sanchez-Gonzalez M., A. Blanco-Gamez, A. Escalante, A.G. Valladares, C. Olvera and R. Parra. 2011. Isolation and characterization of new facultative alkaliphilic Bacillus flexus strains from maize processing waste water (nejayote). Let Appl. Microbiol. 52: 413–419.
  • Schwabe S.J., J. Parkes and P.L. Smart. 1997. Significance of bacterial activity in carbonate diagenesis, pp. 174–175. In: Clare J.L. (ed). Proceedings of the eight symposium on geology of the Bahamas and other carbonate regions. Bahamian Field Station Ltd., San Salvador, Bahamas.
  • Shankar S., SV More and R. Seeta Laxman. 2010. Recovery of silver from waste x-ray film by alkaline protease from Conidiobolus coronatus. Kathmandu Univ. J. Sci. Engin Technol. 6: 60–69.
  • Sharma D., B. Sharma and A.K. Shukla. 2011. Biotechnological approach of microbial lipase: A review. Biotechnology 10: 23–40.
  • Sheibani S., S.F. Yanni, R. Wilhelm, J.K. Whalen, L. Whyte, C.W. Greer and C.A. Madramootoo. 2013. Soil bacteria and archaea found in long-term corn (Zea mays L.) agroecosystems in Quebec, Canada. Can. J. Soil. Sci. 93: 45–57.
  • Stres B. 2007. The relationship between total and culturable bacteria in cold soils. Acta Agric. Slov. 90: 25–31.
  • Su J., Y. Wu, X. Ma, G. Zhang, G. Feng and Y. Zhang. 2004. Soil microbial counts and identification of culturable bacteria in an extreme by arid zone. Folia Microbiol. 48: 423–49.
  • Subhash Y., C. Sasikala and C.V. Ramana. 2014. Bacillus luteus sp. nov., isolated from soil. Int. J. System. Evolut. Microbiol. 64: 1580–1586.
  • Tamura K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molec. Biol. Evol. 30: 2725–2729.
  • Tiago I., C. Pires, V. Mendes, P.V. Morais, M. da Costa and A. Verissimo. 2006. Microcella putealis gen. nov., sp. nov., a Gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst. Appl. Microbiol. 28: 479–487.
  • Trotsenko Y.A. and V.N. Khmelenina. 2002. Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177: 123–131.
  • Vijay Kumar E., M. Srijana, K. Kiran Kumar, N. Harikrishna and G. Reddy. 2011. A novel serine alkaline protease from Bacillus altitudinis GVC11 and its application as a dehairing agent. Bioproc. Biosyst. Engin. 34: 403–409.
  • Wang N., Y. Zhang, Q. Wang, J. Liu, H. Wang, Y. Xue and Y. Ma. 2006. Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica. Biotechnol. J. 1: 1258–1265.
  • Ziółkowska D., O. Schyichuk and M. Cichurska. 2013. Alkaline calcium carbonate from soda production. Composition and proposal of use. Przem. Chem. 92: 239–243.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-2a1cc093-a382-4787-b826-d70444d0f657
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.