PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 5 |
Tytuł artykułu

A comparison of soil CO2 efflux rate in young rubber plantation, oil palm plantation, recovering and primary forest ecosystems of Malaysia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tropical deforestation and land conversion has been an environmental challenge over time and this is likely to have wide-reaching consequences for soil CO2 efflux. Such soil-carbon dynamic disturbances are critical in light of climate change, as tropical forests store almost 30% of global forest carbon. Soil CO2 efflux and environmental factors were determined in four different forest ecosystems of primary Dipterocarp forest, a 50-year-old recovering Dipterocarp forest, and a 5-year-old rubber and oil palm plantation using an automated soil CO2 chamber technique (Li-Cor 8100) with an in-built infrared gas analyzer. The forest sections are located within 1,800 m of each other while the plantation is 1,500 m away in the tropical lowland forest of Pasoh, Peninsular Malaysia. The aim was to determine the influence of environmental factors influencing soil CO2 efflux in relation to different forest ages and stand densities as a result of forest disturbance. Multiple regression analysis has been conducted on the relationship between soil CO2 and environmental factors. Soil CO2 efflux rate was found to range from 1.47-13.22 μmolCO2 m-2·s-1 (5.37 μmolCO2 m-2·s-1), 1.18-10 μmolCO2 m-2·s-1 (5.107 μmolCO2 m-2·s-1), 0.88-12.07 μmolCO2 m-2·s-1 (3.260 μmolCO2 m-2·s-1), and 2.33-7.89 μmolCO2 m-2·s-1 (4.678 μmolCO2 m-2·s-1) in the 50-year-old recovering forest, primary forest, oil palm plantation, and rubber plantation, respectively. Likewise, the highest forest biomass occurred in the primary forest and was followed by the 50-year-old recovering forest, rubber and oil palm plantation. Although the mean soil CO2 efflux rate did not differ significantly, differences were evident in the environmental factors such as soil temperature and moisture occurring at a range of 23 to 32°C and 15 to 35.56%, respectively, to influence soil CO2 efflux. The highest CO2 efflux rate was recorded in the 50-year-old recovering forest and followed by the primary forest, and rubber and oil palm plantation. The finding revealed a significant and strong correlation between soil CO2 efflux and soil temperature, moisture, and forest carbon input. Furthermore, the spatial variation in soil CO2 efflux was attributed to total above-ground biomass, below ground biomass, and forest carbon stock. We can conclude that the spatial variation in Soil CO2 efflux across the four different forest ecosystems is as a result of forest disturbance and land conversion triggering changes in environmental factors as well as forest carbon, thereby increasing microbial activity to emit soil CO2.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
23
Numer
5
Opis fizyczny
p.1649-1657,fig.,ref.
Twórcy
autor
  • Air Pollution and Ecophysiology Laboratory, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Environmental Sciences, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Darul Ehsan, Selangor, Malaysia
autor
  • Environmental Forensics Research Center, Faculty of Environmental Studies, University Putra Malaysia, 43400 UPM Serdang, Dural Ehsan, Selangor, Malaysia
  • Institute of Tropical Forest and Forest Product, University Putra Malaysia, 43400 UPM, Serdang, Darul Ehsan, Selangor, Malaysia
Bibliografia
  • 1. COX P.M., BETTS R.A., JONES C.D., SPALL S.A., TOT- TERDELL I.J. Acceleration of global warming due to carbon- cycle feedbacks in a coupled model. Nature 408, 184, 2000.
  • 2. PRENTICE I.C., FARQUHAR G.D., FASHAM M.J.R., GOULDEN M.L., HEIMANN M., JARAMILLO V.J., KHESHGI H.S., LE QUERE C., SCHOLES R.J., WAL­LACE D.W.R. The carbon cycle and atmospheric carbon dioxide. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A., (Ed). Climate change: the scientific basis. Cambridge (UK): Cambridge Univ. Press; pp. 183-237, 2001.
  • 3. CHAPIN F., MATSON P. A., MOONEY H. A. Principles of terrestrial ecosystem ecology. Springer, New York 2002.
  • 4. PILEGARD K., HUMMELSHOJ P., JENSEN N. C., CHEN Z. Two years of continuous CO2 eddy flux measured over a Danish beech forest. Agr. Forest Meteorol. 107, 29, 2001.
  • 5. DAVIDSON E. R., RICHARDSON A.D., SAVAGE K., HOLLINGER D.Y. A distinct seasonal pattern of ratio of soil respiration to total ecosystem respiration in a spruce dominated forest. Glob. Change Biol. 1, 23, 2006
  • 6. FIELD C.B., BEHRENFELD M.J., RANDERSON J.T., FALKOWSKI P. Primary production of the biosphere: inte­grating terrestrial and oceanic components. Science 281, 237, 1998.
  • 7. DIXON R., BROWN S., HOUGHTON R., SOLOMON A., TREXLER M., WISNIEWSKI J. Carbon pools and flux of global forest ecosystems. Science (Washington) 263, (5144), 185, 1994.
  • 8. MALHI Y., GRACE L. Tropical forests and atmospheric carbon dioxide. Tree 15, 332, 2000.
  • 9. HOUGHTON R., HACKLER J. Emissions of carbon from forestry and land use change in tropical Asia. Glob. Chang Biol. 5, (4), 481, 1999.
  • 10. EPRON D., FRAQUE L. LUCOT E., BODOT P. M. Soil CO2 efflux in a beech forest dependence on soil temperature and soil water content. Ann. For. Sci. 56, 221, 1999.
  • 11. RAICH J. W., SCHLESINGER W.H. The global carbon dioxide flux in soil and its relationship to vegetation and cli­mate. Tellus. 44B, 189, 1992.
  • 12. STOYAN H., DE-POLLI H., BOHM S., ROBERTSON G.P., PAUL E. A. Spatial heterogeneity of soil respiration and relates properties at the plant scale. Plant Soil 222, 203, 2000.
  • 13. LA SCALA JR. N., MARQUES JR. J., PEREIRA G.T., CORA J. E. C dioxide emission related to chemica proper­ties of a tropical bare soil. Soil Biol. Biochem. 32, 1469, 2000.
  • 14. RAYMENT P., JARVIS M. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest. Soil Biol. Biochem., 32, (1), 35, 2000.
  • 15. XU M., QI Y. Soil-surface CO2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California. Global Change Biol. 7, 667, 2001.
  • 16. MAESTRE F.T., CORTINA J. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Appl. Soil Ecol. 23, 199, 2003.
  • 17. SCHWENDENMANN L., VELDKAMP E., BRENES T., O'BIEN J., MACKENSEN J. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64, 111, 2003.
  • 18. SCOTT-DENTON L.E., SPARKS K.L., MONSON R. K. Spatial and temporal Controls of soil respiration rate in a high elevation, subalpine forest. Soil Biol. Biochem. 35, (4), 525, 2003.
  • 19. EPRON D., NOUVELLON Y., ROUPSARD O., MONU- VONDY W., MABIALA B. SAINT-ANDRE' L., JOFFRE R., JOURDAN C., BONNEFOND J.M., BERBIGIER P., HAMEL O. Spatial and temporal variations of soil respira­tion in a Eucalyptus plantation in Congo. Forest Ecol. Manag. 202, 149, 2004.
  • 20. KNOHL A., SOE A. R.B., KUTCH W.L., GOCKENDE M., BUCHMANN N. Representative estimates of soil and ecosystem respiration in an old beech forest. Plant Soil 302, 189, 2007.
  • 21. BURTON A. J., PREGITZER K. S. Measuring forest flour minerals soil and root carbon stocks. Springer science + Business media BV. 2008.
  • 22. CARTER M., OGRINC N. Soil and S13C CO2 in natural beech forest (Fagues sylvatica L) in relation to stand struc­ture. Isot. Environ. Healt. S. 47, (2), 126, 2011
  • 23. NAM J. N., YOWHAN S., SUE K. L., WOOYOUNG J., NA-YEON L., SANG-WON B., HYUN-SEOP K. Diurnal pattern of soil CO2 efflux in a pinus densiflora forest mea­sured using an open flow chamber system. Forest Science and technology 6, (1), 2010.
  • 24. TANG X-L., ZHOU G-Y., LIU S-G., ZHANG D-G., LIU S- Z., ZHOU C-Y. Dependence of soil respiration and soil moisture in successional forests in southern China. Integr Plant Biol 48,654, 2006.
  • 25. SALESKA S.R., MILLER S.D., MATOROSS O.M., GOULDEN M.L., WOFSY S.C., DE ROCHA H.R., DE CAMARGO P.B., CRILL P., DAUDE B.C., DE FREITA H.C., HURTYAR L., KELLER M., KIRCHOFF V., MEN­TON M., MUNGER J., HAMMOND W., HYLE E., RICE A., SILVA H. Carbon in amazon forests: Unexpected sea­sonal fluxes and disturbances induced losses. Doi 10.1126. Science 1091115. 302, 1554, 2003.
  • 26. HUTCHINSON G. L., LIVINGSTON G.P. Soil atmosphere gas exchange in Dane, J.H. Topp G.C.(Eds) method of soil analysis part 4, physical method. Soil Science Society of America, Madison USA. pp. 1159-118, 2002.
  • 27. DAVIDSON E., SAVAGE K., VERCHOT L., NAVARRO R. Minimizing artifacts and biases in chamber-based mea­surements of soil respiration. Agr. Forest Meteorol., 113, (1­4), 21, 2002.
  • 28. PUMPANEN J., KOLARI P., LLUESNIEMI H., MINKKI- NEN K., VESALA T., NIINISTO S., LOHILA A., LAR- MOLA T., MORERO M., JANSSENS I., YUSTE J.C., CRUN ZWEIG J.M., RETH S., SUBKE J. A., SAVAGE K., KUTSCH W., OSTRENG G., ZIEGLER W., ANTHOM P., LINDROTH A., HAR P. Comparison of different chamber techniques for measurement soil CO2 efflux. Agr. Forest Meteorol. 123, 159, 2004.
  • 29. JASSEL R.S., BLACK T.A., CAI T., MORGENSTERN K., LI Z., GAUMONT-GUAY D., NESIC Z. Components of ecosystem respiration and an estimate of net primary pro­ductivity of an intermediate aged Dougles-fir stand. Agr. Forest Meteorol. 144, 44, 2007.
  • 30. ZHENFENG X., CHUAN W., PEI X., ZHENG T., RONG H., GANG C., QING L. Initial Responses of soil efflux and C, N pools to experiment warming in two contrasting forest ecosystem, eastern Tibetan, Plateau, China. Plant Soil 336, 183, 2010.
  • 31. KOCHUMMEN K.M., LAFRANKLE J.V., MANOKARA N. Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia. Journal of Tropical Forest Science 3, 1, 1990.
  • 32. STAFF S.S. Key to soil taxonomy 10th ed, ed USD-Natural Resource conservation services, Washington D.C.PP. 2006.
  • 33. MANOKARA N., LAFRANKIE J.V., ISMAIL R. Structure and composition of the Dipterocarpaceae in a lowland rain­forest in peninsular Malaysia. Biotropics 41, 307, 1991.
  • 34. SAWAMOTO T., HATANO R., YAJIMA T., TAKAHASHI K., ISAEV A. P. Soil respiratio in Siberian tiaga ecosystem with different histories of forest fire. Soil Sci. Plant Nutr. 46, (1), 31, 2000.
  • 35. TUFEKCIOGLU A., RAICH J.W., ISENHART T. M., SHULTZ R. C. Soil respiration within riparian buffers and adjacent crop fields. Plant Soil 229, 117, 2001.
  • 36. FRANK A. B., LIEBIG M.A., HANSON J. D. Soil carbon dioxide fluxes in northern semi- arid and grassland. Soil Biol. Biochem. 34, (9), 1235, 2002.
  • 37. TURESTSKY M. R., WIEDER R.K., VITT D.H. Boreal peat land Carbon fluxes Under permafrost regimes. Soil Biol. Biochem. 34, 907, 2002.
  • 38. PHILIPPI T. E. Multiple regression herbivory in: The design and analysis of Ecological Experiments (eds. M. Scheider and J. Gurevitch) Chapman and Hill; New York. 1993.
  • 39. GOUGH C. M., SEILER J. R., WISEMAN P. E., MAIER C. A. Soil CO2 efflux in loblolly pine (Pinus taeda L) Plantation on the Virginia piedmont and south Carolina coastal plan over a rotation length chronosequence. Biogeochemistry 73, 127, 2005.
  • 40. CURIE Y. J., JANSSENS I A., CARRAR A., CEULE- MANS R. Annual Q10 of soil respiration reflects plants phonological patterns as well as temperature sensitivity. Global Change Biol. 10, 161, 2004.
  • 41. MO W., LEE M S., UCHIDA M., INATOMI M., SAI­GUSA N., MARIKO S., KOIZUMI H. Spatial and annual variations in soil respiration in a cool temperate deciduous Broad-leaved forest in Japan. Agr. Forest Meteorol. 134, 81, 2005.
  • 42. ZHENG S., Y. LI. SHAOJUN WANG., G W. HONGHUA RUAN., R.H. YANFEI., T. ZENGXIN., Z. Accelerated soil CO2 efflux after convention from secondary oak forest to pine plantation in southern China. Eco. Res 24, 1257, 2009.
  • 43. FENN K. M., MALHI Y., MORECROFT M. D. Soil CO2 efflux in a temperature deciduous forest. Environmental dri­vers and component distribution. Soil Biol. Biochem. 42, 1685, 2010.
  • 44. FANG C., MONCRIEFF J. B., GHOLZ H. L., CLARK K. L. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Funct. Ecol. 12, 319, 1998.
  • 45. LINN D.M., DORAN J. W. Effect of water-filled pore space on C dioxide and nitrous oxide production in tilled and non- tilled soils. Soil Sci. Soc. Am. J. 48, 1267, 1984.
  • 46. TORU H., SATORU M., SHIGEHIRO I. Temperature con­trols temporal variation in soil CO2 efflux in a secondary beech forest in Appi highland Japan. Published online 2008. The Japanese s forest society and Springer 2008.
  • 47. SAIZ C., GREEN K., BUTTERBACH-BAHL R., KIESE V., AVITABILE E. P., FARRELL G. Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil, 287, (1-2), 161, 2006.
  • 48. TANAKA K., HASHIMOTO S. Plant canopy effects on soil thermal and hydrological properties and soil respiration. Ecol. Model. 196, 32, 2006.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-273b4ee3-9988-4c4d-9020-6b07953171b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.