PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 3 |
Tytuł artykułu

Enriched environment increases the total number of CNPase positive cells in the corpus callosum of middle-aged rats

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It had been reported that enriched environment was beneficial for the brain cognition, neurons and synapses in cortex and hippocampus. With diffusion tensor imaging (DTI), several studies recently found the trained-induced larger corpus callosum. However, the effect of enriched environment on the oligodendrocytes in corpus callosum has not been explored with the unbiased stereological methods. In current study, the effect of enriched environment on the total number of 2',3'- cyclic nucleotide 3'-phosphodiesterase (CNPase) positive cells in middle-aged rat corpus callosum was investigated by means of immunohistochemical techniques and the unbiased stereological methods. We found that, when compared to standard rats, the spatial learning capacity of enriched-environment rats was significantly increased. The total number of the CNPase positive cells in the corpus callosum of enriched-environment middle-aged rats was significantly increased when compared to standard rats. The present study provided, to the best of our knowledge, the first evidence of environmental enrichment-induced increases in the total number of CNPase positive cells in the corpus callosum of middle-aged rats.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
71
Numer
3
Opis fizyczny
p.322-330,fig.,ref.
Twórcy
autor
  • Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China
  • Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
autor
  • Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China
  • Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
  • Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
autor
  • Key Laboratory of Diagnostic Medicine (Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
autor
  • Key Laboratory of Diagnostic Medicine (Ministry of Education), Department of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
autor
  • Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
autor
  • Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
autor
  • Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
autor
  • Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China
  • Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
autor
  • Morphometric Research Laboratory, North Sichuan Medical College, Nanchong, P.R. China
autor
  • Department of Histology and Embryology, Chongqing Medical University, Chongqing, P.R. China
  • Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, P.R. China
Bibliografia
  • Aboitiz F, Rodríguez E, Olivares R, Zaidel E (1996) Age- related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport 7: 1761-1764.
  • Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonté C, Aloisi F, Visentin S (2005) ATP regulates oligodendro- cyte progenitor migration, proliferation, and differentia­tion: involvement of metabotropic P2 receptors. Brain Res Brain Res Rev 48: 157-165.
  • Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148-1150.
  • Bhide PG, Bedi KS (1984) The effects of a lengthy period of environmental diversity on well-fed and previously undernourished rats. I. Neurons and glial cells. J Comp Neurol 227: 296-304.
  • Bloom JS, Hynd GW (2005) The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev 15: 59-71.
  • Braendgaard H, Gundersen HJ (1986) The impact of recent stereological advances on quantitative studies of the ner­vous system. J Neurosci Meth 18: 39-78.
  • Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci 48: 29-69.
  • Cerghet M, Skoff RP, Bessert D, Zhang Z, Mullins C, Ghandour MS (2006) Proliferation and death of oligoden- drocytes and myelin proteins are differentially regulated in male and female rodents. J Neurosci 26: 1439-1447.
  • D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36: 60-90.
  • Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krech D, Bennett EL (1966) Increases in cortical depth and glia numbers in rats subjected to enriched envi­ronment. J Comp Neurol 128: 117-126.
  • Driesen NR, Raz N (1995) The influence of sex, age, and handedness on corpus callosum morphology: a meta­analysis. Psychobiology 240- 247.
  • Duara R, Kushch A, Gross-Glenn K, Barker WW, Jallad B, Pascal S, Loewenstein DA, Sheldon J, Rabin M, Levin B, et al. (1991) Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Arch Neurol 48: 410-416.
  • Gazzaniga MS (2000) Cerebral specialization and inter- hemispheric communication: does the corpus callosum enable the human condition? Brain 123: 1293-1326.
  • Glickstein M, Berlucchi G (2008) Classical disconnection studies of the corpus callosum. Cortex 44: 914-927.
  • Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE (1996) Overexpression of 2',3'-cyclic nucleotide 3'-phosphodiesterase in transgenic mice alters oligoden- drocyte development and produces aberrant myelination. Mol Cell Neurosci 7: 453-466.
  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, et al. (1988) The new stereological tools: disector, fractionator, nucleator and point sampled inter­cepts and their use in pathological research and diagnosis. APMIS 96: 857-881.
  • Gundersen HJ, Jensen EB, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology-reconsid- ered. J Microsc 193: 199-211.
  • Harburger LL, Lambert TJ, Frick KM (2007) Age-dependent effects of environmental enrichment on spatial reference memory in male mice. Behav Brain Res 185: 43-48.
  • Hasan KM, Kamali A, Abid H, Kramer LA, Fletcher JM, Ewing-Cobbs L (2010) Quantification of the spatiotem­poral microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Struct Funct 214: 361-373.
  • Innocenti GM (1986) General organization of the callosal connections in the cerebral cortex. In: Cerebral Cortex (Jones EG, Peters A, Eds). Plenum Press, New York, NY, p. 291-353.
  • Kempermann G, Kuhn HG, Gage FH (1998) Experience- induced neurogenesis in the senescent dentate gyrus. J Neurosci 18: 3206-3212.
  • Lambert TJ, Fernandez SM, Frick KM (2005) Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol Learn Mem 83: 206-216.
  • Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005) Environmental enrichment promotes improved spatial abilities and enhanced den­dritic growth in the rat. Behav Brain Res 163: 78-90.
  • LeVine SM, Goldman JE (1988) Embryonic divergence of oligodendrocyte and astrocyte lineages in developing rat cerebrum. J Neurosci 8: 3992-4006.
  • Levison SW, Young GM, Goldman JE (1999) Cycling cells in the adult rat neocortex preferentially generate oligo- dendroglia. J Neurosci Res 57: 435-446.
  • Lores-Arnaiz S, Bustamante J, Arismendi M, Vilas S, Paglia N, Basso N, Capani F, Coirini H, Costa JJ, Arnaiz MR (2006) Extensive enriched environments protect old rats from the aging dependent impairment of spatial cogni­tion, synaptic plasticity and nitric oxide production. Behav Brain Res 169: 294-302.
  • Lyck L, Dalmau I, Chemnitz J, Finsen B, Schroder HD (2008) Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem 56: 201-21.
  • Mori S, Leblond CP (1970) Electron microscopic identifica­tion of three classes of oligodendrocytes and a prelimi­nary study of their proliferative activity in the corpus callosum of young rats. J Comp Neurol 139: 1-28.
  • Morris RGM (1983) An attempt to dissociate "spatial mapping" and "working memory" theories of hip- pocampal function. In: Neurobiology of the Hippocampus. (Seifert W, Ed.). Academic Press, London, UK, p. 405-432.
  • Nave KA (2003) Disruption of Cnp1 uncouples oligoden- droglial functions in axonal support and myelination. Nat Genet 33: 366-374.
  • O'Callaghan RM, Griffin EW, Kelly AM (2009) Long-term treadmill exposure protects against age-related neurode- generative change in the rat hippocampus. Hippocampus 19: 1019-1029.
  • Pandya DN, Seltzer B (1986) The topography of commis­sural fibers. In: Two Hemispheres-One Brain: Functions of the Corpus Callosum (Lepore F, Ptito M, Jasper HH, Eds). A.R. Liss, New York, NY, p. 47-74.
  • Parnavelas JG (1999) Glial cell lineages in the rat cerebral cortex. Exp Neurol 156: 418-429.
  • Paxinos G, Watson C (1982) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York, NY.
  • Peters A, Sethares C (2002) Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 442: 227-291.
  • Pfefferbaum A, Lim KO, Desmond JE, Sullivan EV (1996) Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. Alcohol Clin Exp Res 20: 752-757.
  • Rasband MN, Tayler J, Kaga Y, Yang Y, Lappe-Siefke C, Nave KA, Bansal R (2005) CNP is required for mainte­nance of axon-glia interactions at nodes of Ranvier in the CNS. Glia 50: 86-90.
  • Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/ NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11: 1392-1401.
  • Salat D, Ward A, Kaye JA, Janowsky JS (1997) Sex differ­ences in the corpus callosum with aging. Neurobiol Aging 18: 191-197.
  • Sim FJ, Zhao C, Penderis J, Franklin RJ (2002) The age-relat­ed decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci 22: 2451-2459.
  • Sirevaag AM, Greenough WT (1987) Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Res 424: 320-332.
  • Szeligo F, Leblond CP (1977) Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning. J Comp Neurol 172: 247-263.
  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased ste- reological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231: 482-497.
  • Yazgan MY, Kinsbourne M (2003) Functional consequences of changes in callosal area in Tourette's syndrome and attention deficit/hyperactivity disorder. In: The Parallel Brain: The Cognitive Neuroscience of the Corpus Callosum (Zaidel E, Iacoboni M, Eds). MIT Press, Cambridge, MA, p. 423-432.
  • Yin X, Peterson J, Gravel M, Braun PE, Trapp BD (1997) CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res 50: 238-247.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-257c81d7-0037-462f-9da2-20b7b113882f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.