Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 82 | 4 |
Tytuł artykułu

Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L.

Treść / Zawartość
Warianty tytułu
Języki publikacji
Hydrogen sulfide (H2S) is an important signaling molecule involved in several stress-resistance processes in plants, such as drought and heavy metal stresses. However, little is known about the roles of H2S in responses to chilling stress. In this paper, we demonstrated that chilling stress enhance the H2S levels, the H2S synthetase (L-/D-cysteine desulfhydrase, L/DCD) activities, and the expression of L/DCD gene in Vitis vinifera L. ‘F-242’. Furthermore, the seedlings were treated with sodium hydrosulfide (NaHS, a H2S donor) and hypotaurine (HT, a H2S scavenger) at 4°C to examine the effects of exogenous H2S on grape. The results revealed that the high activity of superoxide dismutase and enhanced expression of VvICE1 and VvCBF3 genes, but low level of superoxide anion radical, malondialdehyde content and cell membrane permeability were detected after addition of NaHS. In contrast, HT treatment displayed contrary effect under the chilling temperature. Taken together, these data suggested that H2S might be directly involved in the cold signal transduction pathway of grape.
Opis fizyczny
  • Key Laboratory of Plant Biotechnology in Universities of Shandong Province/College of Life Science, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao City, Shandong Province 266109, China
  • Key Laboratory of Plant Biotechnology in Universities of Shandong Province/College of Life Science, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao City, Shandong Province 266109, China
  • Key Laboratory of Plant Biotechnology in Universities of Shandong Province/College of Life Science, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao City, Shandong Province 266109, China
  • Key Laboratory of Plant Biotechnology in Universities of Shandong Province/College of Life Science, Qingdao Agricultural University, Changcheng Road 700, Chengyang District, Qingdao City, Shandong Province 266109, China
  • 1. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16(13):1792–1798.
  • 2. Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A. Characterization of cysteine-degrading and H2S-releasing enzymesof higher plants – from the field to the test tube and back. Plant Biol.2007;9(5):582–588.
  • 3. Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem.2005;43(5):473–483.
  • 4. Álvarez C, Calo L, Romero LC, García I, Gotor C. An O-acetylserine(thiol) lyase homolog with L-cysteine desulfhydrase activity regulates cysteinehomeostasis in Arabidopsis. Plant Physiol. 2010;152(2):656–669.
  • 5. Thomas M, Scott N. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet. 1993;86(8):985–990.
  • 6. Wang Y, Li L, Cui W, Xu S, Shen W, Wang R. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil. 2012;351(1–2):107–119.
  • 7. Li ZG, Gong M, Xie H, Yang L, Li J. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L.)suspension cultured cells and involvement of Ca2+ and calmodulin. PlantSci. 2012;185–186:185–189.
  • 8. Li L, Wang Y, Shen W. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Bio- Metals. 2012;25(3):617–631.
  • 9. Wang BL, Shi L, Li YX, Zhang WH. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta.2010;231(6):1301–1309.
  • 10. Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol.2010;52(6):556–567.
  • 11. Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP, et al. Hydrogen sulfide protects soybean seedlings against drought-induced oxidativestress. Acta Physiol Plant. 2010;32(5):849–857.
  • 12. Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, et al. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem. 2013;62:41–46.
  • 13. Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun.2011;414(3):481–486.
  • 14. Tan JF, Zhao HJ, Hong JP, Han YL, Li H, Zhao WC. Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulationin wheat seedlings subjected to osmotic stress. World J AgricSci. 2008;4:307–313.
  • 15. Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol. 2008;50(12):1518–1529. http://dx.doi. org/10.1111/j.1744-7909.2008.00769.x
  • 16. Hu KD, Hu LY, Li YH, Zhang FQ, Zhang H. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copperstress. Plant Growth Regul. 2007;53(3):173–183.
  • 17. Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, et al. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 2011;189(2):415–427.
  • 18. Zhao R, Sheng J, Lv S, Zheng Y, Zhang J, Yu M, et al. Nitric oxide participates in the regulation of LeCBF1 gene expression and improvescold tolerance in harvested tomato fruit. Postharvest Biol Technol.2011;62(2):121–126.
  • 19. Mikkelsen MD, Thomashow MF. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 2009;60(2):328–339.
  • 20. Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57(1):781–803.
  • 21. Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. Abscisic acid induces CBF gene transcription and subsequent inductionof cold-regulated genes via the CRT promoter element. Plant Physiol.2004;135(3):1710–1717.
  • 22. Chen L, Zhong H, Ren F, Guo QQ, Hu XP, Li XB. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Rep. 2011;30(4):463–471.
  • 23. Zhou M, Wu L, Liang J, Shen C, Lin J. Expression analysis and functional characterization of a novel cold-responsive gene CbCOR15a from Capsellabursa-pastoris. Mol Biol Rep. 2012;39(5):5169–5179.
  • 24. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24(6):2578–2595.
  • 25. Sangwan V, Foulds I, Singh J, Dhindsa RS. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranesand cytoskeleton, and requires Ca2+ influx. Plant J. 2001;27(1):1–12.
  • 26. Ma YY, Zhang YL, Shao H, Lu J. Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (VitisL.) from China. J Agron Crop Sci. 2010;196(3):212–219.
  • 27. Liu J, Hou L, Liu GH, Liu X, Wang XC. Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. Chin Sci Bull. 2011;56(33):3547–3553.
  • 28. Zhao HJ, Zou Q. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradianceand oxidative stress. Photosynthetica. 2002;40(4):523–527.
  • 29. Ederli L, Pasqualini S, Batini P, Antonielli M. Photoinhibition and oxidative stress: effects on xanthophyll cycle, scavenger enzymes and abscisic acid content in tobacco plants. J Plant Physiol. 1997;151(4):422–428.
  • 30. Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation inplant tissues containing anthocyanin and other interfering compounds.Planta. 1999;207(4):604–611.
  • 31. Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, et al. Profiling membrane lipids in plant stress responses. J Biol Chem. 2002;277(35):31994–32002.
  • 32. Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG. Responses of antioxidants to paraquat in pea leaves (relationships to resistance). PlantPhysiol. 1997;113(1):249–257.
  • 33. Iandolino AB, da Silva FG, Lim H, Choi H, Williams LE, Cook DR. High-quality RNA, cDNA, and derived EST libraries from grapevine(Vitis vinifera L.). Plant Mol Biol Rep. 2004;22(3):269–278.
  • 34. Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol. 2011;51(1):169–187.
  • 35. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896.
  • 36. Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein fromArabidopsis thaliana. FEBS J. 2005;272(5):1291–1304.
  • 37. Soutourina J, Blanquet S, Plateau P. Role of D-cysteine desulfhydrase in the adaptation of Escherichia coli to D-cysteine. J Biol Chem.2001;276(44):40864–40872.
  • 38. Riemenschneider A. Isolation and characterization of cysteine-degrading and H2S-releasing proteins in higher plants [PhD thesis]. Hannover: LeibnizUniversität Hannover; 2006.
  • 39. Li ZG, Ding XJ, Du PF. Hydrogen sulfide donor sodium hydrosulfideimproved heat tolerance in maize and involvement of proline. J PlantPhysiol. 2013;170(8):741–747.
  • 40. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezingtolerance in Arabidopsis. Plant Cell. 2007;19(4):1403–1414.
  • 41. Xiang DJ, Hu XY, Zhang Y, Yin KD. Over-expression of ICE1 gene in transgenic rice improves cold tolerance. Rice Sci. 2008;15(3):173–178.
  • 42. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimicsmultiple biochemical changes associated with cold acclimation. PlantPhysiol. 2000;124(4):1854–1865.
  • 43. Chinnusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants. Physiol Plant. 2006;126(1):52–61.
  • 44. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators thatfunction in drought-, high-salt- and cold-responsive gene expression. PlantJ. 2003;33(4):751–763.
  • 45. Zhao J, Ren W, Zhi D, Wang L, Xia G. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep.2007;26(9):1521–1528.
  • 46. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol. 1996;7(2):161–167.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.