PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 1 |
Tytuł artykułu

Optimization of processing parameters for lettuce vacuum osmotic dehydration using response surface methodology

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to obtain the optimal technological parameters of lettuce vacuum osmotic dehydration, the effects of osmotic temperature, slice thickness, sucrose concentration, and vacuum degree on the vacuum osmotic dehydration were explored. The lettuce water loss rate and solid gain rate decreased with the increase of slice thickness and vacuum degree, and increased with the increase of sucrose concentration and osmotic temperature. Response surface methodology was applied to analyze the infl uence of the four infl uential factors on the evaluated parameters and the optimization of lettuce vacuum osmotic dehydration was studied. The results indicated that, within the experimental scope, the optimized technological parameters of lettuce vacuum osmotic dehydration are the temperature of 28º C, the slice thickness of 2 mm, sucrose concentration of 47%, the vacuum degree of 22 kPa, and the water loss rate and solid gain rate are 72.16% and 11.82%, respectively.
Wydawca
-
Rocznik
Tom
68
Numer
1
Opis fizyczny
p.15-23,fig.,ref.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China
autor
  • College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China
autor
  • College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China
autor
  • College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China
autor
  • College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Weiyangdaxueyuan district of Xi’an, 710021, China
autor
  • College of Mathematics and Computer Science, Yichun University, 336000, China
Bibliografia
  • 1. Abraao A.S., Lemos A.M., Vilela A., Sousa J.M., Nunes F.M., Infl uence of osmotic dehydration process parameters on the quality of candied pumpkins. Food Bioprod. Process., 2013, 91, 481–494.
  • 2. Acosta O., Vıquez F., Cubero E., Optimisation of low calorie mixed fruit jelly by response surface methodology. Food Qual. Prefer., 2008, 19, 79–85.
  • 3. Azam M., Haq M.A., Hasnain A., Osmotic dehydration of mango cubes: Effect of novel gluten-based coating. Drying Technol., 2013, 31, 120–127.
  • 4. Bejaoui M.A., Beltran G., Aguilera M.P., Jimenez A., Continuous conditioning of olive paste by high power ultrasounds: Response surface methodology to predict temperature and its effect on oil yield and virgin olive oil characteristics. LWT – Food Sci. Technol., 2016, 69, 175–184.
  • 5. Chandra S., Kumari D., Recent development in osmotic dehydration of fruit and vegetables: A Review. Crit. Rev. Food Sci., 2015, 55, 552–561.
  • 6. Corrêa J.L.G., Ernesto D.B., Alves J.G.L.F., Andrade R.S., Optimisation of vacuum pulse osmotic dehydration of blanched pumpkin. Int. J. Food Sci. Technol., 2014, 49, 2008–2014.
  • 7. Dak M., Pareek N K., Effective moisture diffusivity of pomegranate arils undergoing microwave-vacuum drying. J. Food Eng., 2014, 122, 117–121.
  • 8. Dong Q., Chen Z.D., Research progress on the osmotic dehydration of fruits and vegetables at home and abroad. Guangzhou Food Sci. Technol., 2004, 20, 129–132.
  • 9. Erbay Z., Koca N., Kaymak-Ertekin F., Ucuncu M., Optimization of spray drying process in cheese powder production. Food Bioprod. Process., 2015, 93, 156–165.
  • 10. Esan T.A., Sobukola O.P., Sanni L.O., Bakare H.A., Munoz L., Process optimization by response surface methodology and quality attributes of vacuum fried yellow fl eshed sweetpotato (Ipomoea batatas L.) chips. Food Bioprod. Process., 2015, 95, 27–37.
  • 11. Ghosh S., Das M.K., Optimization of the effect of gamma radiation on textural properties of different varieties of potato (Kufri Chandramukhi and Kufri Jyoti) and mango (Langra and Fazli) during storage by response surface methodology. Innov. Food Sci. Emerg. Technol., 2014, 26, 257–264.
  • 12. Goula A.M., Lazarides H.N., Modeling of mass and heat transfer during combined processes of osmotic dehydration and freezing (Osmo-Dehydro-Freezing). Chem. Eng. Sci., 2012, 82, 52–61.
  • 13. Huang S.Q., Fan L.P., A kinetics study on the combined drying of the osmotic dehydration and vacuum frying for the carrot chips. Modern Food Sci. Technol., 2013, 29, 223–225, 379.
  • 14. Kaushik N., Srinivasa Rao P., Mishra H.N., Process optimization for thermal-assisted high pressure processing of mango (Mangifera indica L.) pulp using response surface methodology. LWT – Food Sci. Technol., 2016, 69, 372–381.
  • 15. Lazo-Vélez M.A., Avilés-González J., Serna-Saldivar S.O., Temblador-Pérez M.C., Optimization of wheat sprouting for production of selenium enriched kernels using response surface methodology and desirability function. LWT – Food Sci. Technol., 2016, 65, 1080–1086.
  • 16. Maran J.P., Sivakumar V., Thirugnanasambandham K., Sridhar R., Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya, L. Alex. Eng. J., 2013, 52, 507–516.
  • 17. Nair G.R., Singh A., Kurian J., Raghavan V., Electro-osmotic dewatering of high moisture fl ax stems. Biosyst Eng., 2015, 133, 14–20.
  • 18. Nieto A.B., Vicente S., Hodara K., Castro M.A., Alzamora S.M., Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. J. Food Eng., 2013, 119, 104–114 .
  • 19. Nowacka M., Tylewicz U., Laghi L., Rosa M.D., Witrowa-Rajchert D., Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem., 2014, 114, 18–25.
  • 20. Saxena A., Maity T., Raju P.S., Bawa A.S., Optimization of pretreatment and evaluation of quality of jackfruit (Artocarpus heterophyllus) bulb crisps developed using combination drying. Food Bioprod. Process., 2015, 95, 106–117.
  • 21. Souraki B.A., Ghaffari A., Bayat Y., Mathematical modeling of moisture and solute diffusion in the cylindrical green bean during osmotic dehydration in salt solution. Food Bioprod. Process., 2012, 90, 64–71.
  • 22. Wray D., Ramaswamy H.S., Development of a microwave–vacuum-based dehydration technique for fresh and microwave–osmotic (MWODS) pretreated whole cranberries (Vaccinium macrocarpon). Drying Technol., 2015, 33, 796–807.
  • 23. Xin Y., Zhang M., Adhikari B., Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). J. Food Eng., 2013, 119, 640–647.
  • 24. Yadav B.S., Yadav R.B., Jatain M., Optimization of osmotic dehydration conditions of peach. J. Food Sci. Technol., 2012, 49, 547–555.
  • 25. Yang H.J., Khan M.A., Han M.Y., Yu X.B., Bai X.J., Xu X.L., Zhou G.H., Optimization of textural properties of reduced-fat and reduced-salt emulsion-type sausages treated with high pres sure using a response surface methodology. Innov. Food Sci. Emerg. Technol., 2016, 33, 162–169.
  • 26. Zhang H., Feng Y.F., Zhang M., Sun J.C., Study of microwave and spouted bed even drying technology of lettuce. J. Food Sci. Biotechnol., 2012, 31, 402–410.
  • 27. Zhao J.H., Hu R., Liu B., Ni Y.Y., Effect of osmotic dehydration pre-treatment on freezing rate and quality attributes of frozen mango. Trans of the CSAM, 2014, 45, 220–227.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-2268678c-9dfb-4aa7-885f-445cdcacda24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.