Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 4 |
Tytuł artykułu

Autochthonous gut bacteria in two Indian air-breathing fish, climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus): mode of association, identification and enzyme producing ability

Warianty tytułu
Języki publikacji
Scanning electron microscopy (SEM) was used to define the location of epithelium-associated bacteria in the gastrointestinal (GI) tract of two Indian air-breathing fish, the climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus). The SEM examination revealed substantial numbers of rod shaped bacterial cells associated with the microvillus brush borders of enterocytes in proximal (PI) and distal regions (DI) of the GI tract of both the fish species. Ten (two each from the PI and DI of climbing perch and three each from the PI and DI of walking catfish) isolated bacterial strains were evaluated for extracellular protease, amylase and cellulase production quantitatively. All the bacterial strains exhibited high cellulolytic activity compared to amylolytic and proteolytic activites. Only two strains, CBH6 and CBH7, isolated from the DI of walking catfish exhibited high proteolytic activity. Maximum cellulase activity was exhibited by the strain, CBF2, isolated from the PI of climbing perch. Six most promising enzyme-producing adherent bacterial strains were identified by 16S rDNA gene sequence analysis. The strain ATH1 (isolated from climbing perch) showed high similarity to Bacillus amyloliquefaciens whereas, the remaining five strains (isolated from walking catfish) were most closely related to Bacillus licheniformis.
Słowa kluczowe
Opis fizyczny
  • Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
  • Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
  • Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
  • Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
  • Fisheries Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
  • Anderson J., A.J. Jackson, A.J. Matty and B.S. Capper. 1984. Effect of dietary carbohydrate and fibre on the tilapia Oreochromis niloticus (Linn.). Aquaculture 37: 303–314.
  • Askarian F., Z. Zhou, R.E. Olsen, S. Sperstad and E. Ringø. 2012. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of for fish pathogens. Aquaculture 326–329: 1–8.
  • Asokan S. and C. Jayanthi. 2010. Alkaline protease production from Bacillus licheniformis and Bacillus coagulans. J. Cell Tissue. Res. 10(1): 2119–2123.
  • Bairagi A., K. Sarkar Ghosh, S.K. Sen and A.K. Ray. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult. Int. 10: 109–121.
  • Balebona M.C., M.A. Moriñigo, A. Faris, T. Krovacek, I. Månsson, M.A. Bordas and J.J. Borrego. 1995. Influence of salinity and pH on adhesion of pathogenic Vibrio strains to Sparus aurata skin mucus. Aquaculture 132: 113–120.
  • Banerjee G., A.K Ray, F. Askarian and E. Ringø. 2013. Characterization and identification of enzyme-producing autochthonous bacteria from gastrointestinal tract of two Indian air-breathing fish. Benef. Microbes. 4(3): 277–284.
  • Bernfeld P. 1955. Amylase [alpha] and [beta], pp. 149–150. In: Kolowick S.P. and N.O. Kaplan (eds). Methods Enzymol. Academic Press, New York, USA.
  • Beveridge M.C.M., P.K. Sikdar, G.N. Frerichs and S. Millar. 1991. The ingestion of bacteria in suspension by. the common carp Cyprinus carpio L. J. Fish. Biol. 39: 825–831.
  • Bruno D.W. 1988. The relationship between auto-agglutination, cell surface hydrophobicity and virulence of the fish pathogen Renibacterium salmoninarum. FEMS Microbiol. Lett. 51: 135–140.
  • Cao H., S. He, R. Wei, M. Diong and L. Lu. 2011. Bacillus amyloliquefaciens G1: A potential antagonistic bacterium against eelpathogenic Aeromonas hydrophila. Evid.-Based Complalt. Altern. Med. Doi: 10. 1155/ 2011/ 824104.
  • Chen X.H., R.M. Borriss, H. Junge, G. Mögel, S. Kunz and R. Borriss. 2009. “Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease”. J. Biotechnol. 140(1–2): 38–44.
  • Dan S.K. and A.K. Ray. 2013. Characterization and identification of phytase producing bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Ann. Microbiol. 64: 297–306.
  • Das K.M. and S.D. Tripathi. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92: 21–32.
  • Deb P., S.A. Talukdar, K. Mohsina, P.K. Sarker and S.M. Abu Sayem. 2013. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springer Plus 2: 154–165.
  • Degering C., T. Eggert, M. Puls, J. Bongaerts, S. Evers, K.H. Maurer and K.E. Jaeger. 2012. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: A Lonar soda lake isolate. Indian. J. Exp. Biol. 50: 569–576.
  • Denison D.A. and R.D. Koehn. 1977. Cellulase activity of Poronia oedipus. Mycologia 69:592–601.
  • Ghosh K., M. Roy, N. Kar and E. Ringø. 2010. Gastrointestinal bacterial in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): Scanning Electron Microscopy and bacteriological study. Acta. Icthyol. Piscat. 40(2): 129–135.
  • Hellberg H. and I. Bjerkäs. 2000. The anatomy of the oesophagus, stomach and intestine in common wolffish (Anarhichas iupus). Acta Vet. Scand. 41: 283–297.
  • Hilton J.W., J.L. Atkinson and S.J. Slinger. 1989. Effect of increased dietary fiber on the growth of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 40: 81–85.
  • Jhingran V.G. 1997. Fish and Fisheries of India, pp. 335–337 3rd ed. Hindustan Publishing Corporation, New Delhi, India.
  • Kar N. and K. Ghosh. 2008. Isolation and characterization of extracellular enzyme producing Bacilli in the digestive tract of rohu, Labeo rohita (Hamilton) and murrel, Channa punctatus (Bloch). Asian. Fish. Sci. 21: 421–434.
  • Knutton S. 1995. Electron Microscopical Methods in Adhesion. Methods Enzymol. 253: 145–158.
  • Knutton S., D.R. Lloyd and A.S. McNeish. 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect. Immun. 55: 69–77.
  • Kravacek K., A. Faris, W. Ahne and I. Mänsson. 1987. Adhesion of Aeromonas hydrophila and Vibrio anguillarum to fish cells and to mucus-coated glass slides. FEMS Microbiol. Lett. 42: 85–89.
  • Kristensen J.H. 1972. Carbohydrases of some marine invertebrates with notes on their food and on the natural occurrence of carbohydrates studied. Mar. Biol. 14: 130–142.
  • Leary D.F. and R.T. Lovell. 1975. Value of fiber in production type diets for channel catfish. Trans. Am. Fish. Soc. 104: 328–332.
  • Lesel R. and J.G. Pointel. 1979. Settlement of bacterial flora in the digestive tract of rainbow trout scanning electron microscope study. Annales de Zoologic Ecologic Animale 11: 327–335.
  • Lindsay G.J.H. and J.E. Harris. 1980. Carboxymethylcellulose activity in the digestive tracts of fish. J. Fish Biol. 6: 219–233.
  • Liu W., X. Wang, L. Wua, M. Chen, C. Tu, Y. Luo and P. Christie. 2012. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge. Chemosphere 87: 1105–1110.
  • Lødmel J.B., T.M. Mayhew, R. Myklebust, R.E. Oslen, S. Espelid and E. Ringø. 2001. Effect of three dietary oils on diseases susceptibility in Arctic char (Salvelinus alpines) during cohabitant challenge with Aeromonus salmonicida ssp. salmonocida. Aquacult. Res. 32: 935–945.
  • Lowry O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biolo. Chem. 193: 265–275.
  • Luczkovich J.J. and E.J. Stellwag. 1993. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: size-related changes in diet and microbial abundance. Mar. Biol. 116: 381–388.
  • Mondal S., T. Roy and A.K. Ray. 2010. Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. J. World Aquacult. Soc. 41(3): 369–377.
  • Mondal S., T. Roy, S.K. Sen and A.K. Ray. 2008. Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta. Ichthyol. Piscat. 38: 1–8.
  • Niederholzer R. and R. Hofer. 1979. The adaptation of digestive enzymes to temperature, season and diet in roach Rutilus rutilus L. and rudd Scardinius erythrophthalmus L. J. Fish Biol. 15: 411–416.
  • Parker N.D. and G.B. Munn. 1984. Increased cell surface hydrophobicity associated with possession of additional surface protein by Aeromonas salmonicida. FEMS Microbiol. Lett. 21: 233–237.
  • Pond M.J., D.M. Stone and D.J. Alderman. 2006. Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture 261: 194–203.
  • Ray A.K., K. Ghosh, and E. Ringø. 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquacult. Nutr. 18: 465–492.
  • Ray A.K., T. Roy, S. Mondal and E. Ringø. 2010. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquacult. Res. 41(10): 1462–1469.
  • Ringø E., R.E. Olsen, T.M. Mayhew and R. Myklebust. 2003. Electron microscopy of the intestinal microflora of fish. Aquaculture 227: 395–415.
  • Ringø E. 1993. The effect of chromic oxide (Cr₂O₃) on aerobic bacterial populations associated with the epithelial mucosa of Arctic charr, Salvelinus alpinus (L.). Can. J. Microbiol. 39: 1169–1173.
  • Ringø E. 2008. The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquacult. Res. 39: 171–180.
  • Ringø E. and T.H. Birkbeck. 1999. Intestinal microbiota of fish larvae and fry. Aquacult. Res. 26: 773–789.
  • Ringø E., E. Strøm and J.A. Tabachek. 1995. Intestinal micro flora of salmonids: a review. Aquacult. Res. 26: 773–789.
  • Ringø E., J.B. Lødemel, R. Myklebust, L. Jensen, V. Lund, T.M. Mayhew and R.E. Olsen. 2002. The effect of soybean, linseed and marine oils on aerobic gut microbiota of Arctic charr (Salvelinus alpinus L.) prior to and post challenge with Aeromonas salmonicida ssp. salmonicida. Aquacult. Res. 33: 591–606.
  • Ringø E., J.B. Lødemel, R.T. Myklebust, T. Kaino, T.M. Mayhew and R.E. Olsen. 2001. Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpines L.) – An electron microscopical study. J. Appl. Microbiol. 90: 294–300.
  • Ringø E., R. Myklebustd, T.M. Mayhew and R.E. Olsen. 2007. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268: 251–264.
  • Ringø E., S. Sperstad, R. Myklebust, S. Refstie and A. Krogdahl. 2006. Characterization of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261: 829–841.
  • Roy T., S. Mondal and A.K. Ray. 2009. Phytase producing bacteria in digestive tract of some fresh water fish. Aquacult. Res. 40: 344–353.
  • Saha A.K. and A.K. Ray. 1998. Cellulase activity in rohu fingerlings. Aquacult. Int. 6: 281–291.
  • Saha S., R.N. Roy, S.K. Sen and A.K. Ray. 2006. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (P) and grass carp, Ctenopharyngodon idella (V). Aquacult. Res. 37: 380–388.
  • Sangaralingam S., T. Kuberan and M.S. Reddy. 2012. Production of protease from Bacillus licheniformis AP.MSU7 isolated from the gut of shrimp. J. Biosci. Res. 3(3): 136–141.
  • Shiau S.Y., C.C. Kwok, C.J. Chen, H.T. Hong and H.B. Hsieh. 1989. Effects of dietary fibre on the intestinal absorption of dextrin, blood sugar level and growth of tilapia, Oreochromis niloticus × O. aureus. Aquaculture 34: 929–935.
  • Skrodenytė-Arbačiauskienė V. 2007. Enzymatic activity of intestinal bacteria in roach Rutilus rutilus L. Fish. Sci. 73: 964–966.
  • Spanggaard B., I. Huber, J. Nielsen, T. Nielsen, K.F. Appel and L. Gram. 2000. The microflora of rainbow trout intestine, a comparison of traditional and molecular and molecular identification. Aquaculture 182: 1–15.
  • Tannock G.W. 1987. Demonstration of mucosa-associated microbial populations in the colons of mice. Appl. Environ. Microbiol. 53: 1965–1968.
  • Walter H.E. 1984. Methods of Enzymatic Analysis, p. 238. Verlag Chemie, Weinheim, Germany.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.