PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 73 |
Tytuł artykułu

Phenotypic plasticity of European beech (Fagus sylvatica L.) stomatal features under water deficit assessed in provenance trial

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of research into leaf stomatal variability of five European beech provenances originating from Austria, Bosnia and Hercegovina, Germany, Romania and Serbia are presented in this paper. Aim of the study was to investigate how stomatal traits of provenances originating from different environments change in response to drought stress and to assess the phenotypic plasticity of the stomatal features investigated. The study was conducted during two different years, characterized by contrasting weather conditions (2010 and 2011). Two-way ANOVA revealed that provenances differ significantly in terms of stomatal density (SD), width of stomatal aperture (Wb), potential conductance index (PCI) and relative stomatal pore surface (RSPS), during both seasons. In a dry year (2011) all provenances significantly increased stomatal density by between 16.1% (Hasbruch – DE) and 21.9% (Cer – SRB). Guard cell length (LA) was not statistically different among provenances in either year (2010 and 2011), even though LA decreased in the dry year (2011) in all provenances. Reaction norms were steep in most of the parameters suggesting the possibility of a plastic response of provenances toward changes in soil water regime, influenced by the prevailing weather each year. Phenotypic plasticity indices were the highest in regards of SD, PCI and RSPS, indicating that these traits would be good candidates for improvement in breeding programs aimed at selection of drought resistant.
Wydawca
-
Czasopismo
Rocznik
Tom
73
Opis fizyczny
p.163-173,fig.,ref.
Twórcy
autor
  • Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Cehova 13, 21000 Novi Sad, Republic of Serbia
autor
  • Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Cehova 13, 21000 Novi Sad, Republic of Serbia
autor
  • Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Cehova 13, 21000 Novi Sad, Republic of Serbia
autor
  • Department of Evolutionary Biology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Bulevar Despota Stefana 132, 11000 Belgrade, Republic of Serbia
  • Institute for Forest Genetics, Johann-Heinrich von Thunen-Institute, Sieker Landstr.2, D-22927 Grosshansdorf, Germany
autor
  • Department of Evolutionary Biology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Bulevar Despota Stefana 132, 11000 Belgrade, Republic of Serbia
Bibliografia
  • Bagnouls F., Gaussen H. 1953. Saison sčche et indice xérothermique. Documents pour les Cartes des Productions Vegetales, Tome III. Toulouse.
  • Balasooriya B.L.W.K., Samson R., Mbikwa F., Vitharana U.W.A., Boeckx P., van Meirvenne M. 2009. Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environmental and Experimental Botany 65: 386–394.
  • Beerling D.J., Chaloner W.G. 1993. Stomatal density responses of Egyptian Olea europaea L. leaves to CO2 change since 1327 BC. Annals of Botany 71: 431–435.
  • Bergmann D.C., Sack F.D. 2007. Stomatal development. Annual Review of Plant Biology 58: 163–181.
  • Buck A.L. 1981. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology 20: 1527–1532.
  • Campbell G.S., Norman J.M. 1998. An Introduction to Environmental Biophysics. Springer Science & Business Media.
  • Carins Murphy M.R., Jordan G.J., Brodribb T.J. 2014. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell and Environment 37: 124–131.
  • Caspar C.C.C., Oliver J., Casson S., Gray J.E. 2014. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytologist 202: 376–391.
  • Casson S., Gray J.E. 2008. Influence of environmental factors on stomatal development. New Phytologist 178: 9–23.
  • Flexas J., Medrano H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89: 183–189.
  • Fraser H.L., Greenall A., Carlyle C., Turkington R., Ross Friedman C. 2009. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Annals of Botany 103: 769–775.
  • Gallé A., Feller U. 2007. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiologia Plantarum 131: 412–421.
  • Gitz D.C., Baker J.T. 2009. Methods for creating stomatal impressions directly onto archivable slides. Agronomy Journal 101: 232–236.
  • Gindel I. 1969. Stomatal Number and Size as Related to Soil Moisture in Tree Xerophytes in Israel. Ecology 50: 263–267.
  • Grassi G., Magnani F. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment 28: 834–849.
  • Hamanishi E.T., Thomas B.R., Campbell M.M. 2012. Drought induces alterations in the stomatal development program in Populus. Journal of Experimental Botany 63: 4995–4971.
  • Holland N., Richardson A.D. 2009. Stomatal Length Correlates with Elevation of Growth in Four Temperate Species. Journal of Sustainable Forestry 28: 63–73.
  • Hovenden M.J., Vander Schoor J.K., Osanai Y. 2012. Relative humidity has dramatic impacts on leaf morphology but little effect on stomatal index or density in Nothofagus cunninghamii (Nothofagaceae). Australian Journal of Botany 60: 700–706.
  • Jones H.G. 1987. Breeding for stomatal characters. In: Stomatal function. Zeiger E., Farquar G.D. Cowan I.R. (eds.). Stanford University Press, Stanford, California. pp. 431–444.
  • Kardel F., Wuyts K., Babanezhad M., Vitharana U.W.A., Wuytack T., Potters G., Samson R. 2010. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environmental Pollution 158: 788–794.
  • Klooster B., Palmer-Young E. 2004. Water stress marginally increases stomatal density in E. canadensis, but not in A. gerardii. Tillers 5: 35–40.
  • Lake J.A., Quick W.P., Beerling D.J., Woodward F.I. 2001. Plant development. Signals from mature to new leaves. Nature 411: 154.
  • Lake J.A., Woodward F.I. 2008. Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytologist 179: 397–404.
  • Lichtenthaler H.K., Buschmann C., Döll M., Fietz H.J., Bach T., Kozel U., Meier D., Rahmsdorf U. 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research 2: 115–141.
  • Leuschner C. 2002. Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high VPD levels. Flora 197: 262–274.
  • Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolstrom M., Lexer M., Marchetti M. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698–709.
  • Löf M., Bolte A., Welander N.T. 2005. Interacting effects of irradiance and water stress on dry weight and biomass partitioning in Fagus sylvatica seedlings. Scandinavian Journal of Forest Research 20: 322–328.
  • Meier I.C., Leuschner C. 2008. Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiology 28: 297–309.
  • Mészáros I., Veres S., Kanalas P., Oláh V., Szőllősi E., Sárvári E., Lévai L., Lakatos G. 2007. Leaf Growth and Photosynthetic Performance of Two Co-existing Oak Species in Contrasting Growing Seasons. Acta Silvatica & Lignaria Hungarica 3: 7–20.
  • Miljkovic D., Avramov S., Vujic V., Rubinjoni L., Klisaric Barisic N., Zivkovic U., Tarasjev A. 2013. Between-clone, between-leaf and within-leaf variation in leaf epidermis traits in Iris pumila clones. Genetika 45: 297–308.
  • Mohamed V.O.M.A., Zein E.O.B., Fouteye M.M.L., Taleb K.O.D., Trifi M., Ali O.M.S. 2011. Use of multivariate analysis to assess phenotypic diversity of date palm (Phoenix dactylifera L.) cultivars. Scientia Horticulturae 127: 367–371.
  • Pemac D., Tucić B. 1998. Reaction norms of juvenile traits to light intensity in Iris pumila (Iridaceae): A comparison of populations from exposed and shaded habitats. Plant Systematics and Evolution 209: 159–176.
  • Pluta S., Madry W., Sieczko L. 2012. Phenotypic diversity for agronomic traits in a collection of blackcurrant (Ribes nigrum L.) cultivars evaluated in Poland. Scientia Horticulturae 145: 136–144.
  • Republički hidrometeorološki zavod Republike Srbije. 2010. Meteorološki godišnjak 1. Klimatološki podaci 2009. Republika Srbija. http://www.hidmet.gov.rs/
  • Republički hidrometeorološki zavod Republike Srbije. 2011. Meteorološki godišnjak 1. Klimatološki podaci 2010. Republika Srbija. http://www.hidmet.gov.rs/
  • Republički hidrometeorološki zavod Republike Srbije. 2012. Meteorološki godišnjak 1. Klimatološki podaci 2011. Republika Srbija. http://www.hidmet.gov.rs/
  • Richardson A.D., Ashton P.M.S., Berlyn G.P., McGroddy M.E., Cameron I.R. 2001. Within-crown foliar plasticity of western hemlock, Tsuga heterophylla, in relation to stand age. Annals of Botany 88: 1007–1015.
  • Royer D.L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114: 1–28.
  • Saibo N.J.M, Vriezen W.H., Beemster G.T., Van der Straeten D. 2003. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. The Plant Journal 33: 989–1000.
  • SAS Institute, INC. 2011. SAS/STAT Users Guide, Version 9.1.3. Cary, NC: SAS Institute, Inc.
  • Schoch P.G., Zinsou C., Sibi M. 1980. Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. I. Effect of light intensity. Journal of Experimental Botany 31: 1211–1216.
  • Statsoft, INC. 2011. STATISTICA (data analysis software system), version 10. www.statsoft.com.
  • Stojnić S., Orlović S., Galić Z., Vasić V., Vilotić D., Knežević M., Šijačić-Nikolić M. 2012. Stanišne i klimatske karakteristike u provenijeničnim testovima bukve na Fruškoj gori i u Debelom lugu. Topola 189/190: 145–162.
  • Stojnić S., Sass-Klaassen U., Orlović S., Matovic B., Eilmann B. 2013. Plastic growth response of European beech provenances to dry site conditions. IAWA Journal 34: 475–484.
  • Sultan S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537–542.
  • Torre S., Fjeld T., Gislerød H.R., Moe R. 2003. Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. Journal of the American Society for Horticultural Science 128: 598–602.
  • Valladares F., Sanchez-Gomez D., Zavala M.A. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94: 1103–1116.
  • Van Wittenberghe S., Adriaenssens S., Staelens J., Verheyen K., Samson R. 2012. Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees 26: 1427–1438.
  • Wolf L. 1950. Mikroskopicka tehnica, Statni zdravotnicke nakladatelstva. Praha.
  • Xu Z., Zhou G. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59: 3317–3325.
  • Zacchini M., Morini S., Vitagliano C. 1997. Effect of photoperiod on some stomatal characteristics of in vitro cultured fruit tree shoots. Plant, Cell, Tissue Organ Culture 49: 195–200.
  • Zhu Y.H., Kang H.Z., Xie Q., Wang Z., Yin S., Liu C.J. 2012. Pattern of leaf vein density and climate relationship of Quercus variabilis populations remains unchanged with environmental changes. Trees: Structure and Function 26: 597–607.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-103bfccf-f8d8-4635-aaaa-5948681bc8c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.