PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |
Tytuł artykułu

Time and temperature dependent sorption behaviour of dimethoate pesticide in various Indian soils

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experiments were conducted to study the sorption behaviour of dimethoate in three Indian soils at different temperatures. A kinetic study showed that adsorption equilibrium was reached within 15 h at different initial levels of pesticide concentration. Applicability of the pseudo second order kinetic model suggested that the adsorption process was complex and several mechanisms were involved. The Freundlich model explained the adsorption behaviour adequately and the isotherms were of S-type. The adsorption process was found to be strongly affected by temperature. The Gibbs free energy change, ΔGº values (from -15.81 to -16.60 kJ mol-1) indicated that the process was spontaneous and exothermic in nature. The change in enthalpy of adsorption, ΔH° values (from -17.729 to -21.539 kJ mol-1) suggested that relatively weak H-bond forces were the main driving forces for adsorption. Desorption was found to be concentration- and temperature-depen- dent with higher desorption occurring at higher temperature and concentration levels. The results signify the importance of temperature in controlling the mobility of dimethoate in water bodies.
Wydawca
-
Rocznik
Tom
28
Numer
4
Opis fizyczny
p.479-490,fig.,ref.
Twórcy
autor
  • Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India
autor
  • Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, India
Bibliografia
  • Ahmad R. and Kumar R., 2011. Adsorption of amaranth dye onto alumina reinforced polystyrene. Clean-Soil Air Water, 39(1), 74-82.
  • Anderson P.N., Eaton D.L., and Murphy S.D., 1992. Comparative metabolism of methyl parathion in intact and subcellular fractions of isolated rat hepatocytes. Fundam. Appl. Toxicol., 18(2), 221-226.
  • Bajeer M.A., Nizamani S.M., Sherazi S.T.H., and Bhanger M.I., 2012. Adsorption and Leaching Potential of Imidacloprid Pesticide through Alluvial Soil. Am. J. Anal. Chem., 3(8), 604-611.
  • Batista S., Silva E., Galhardo S., Viana P., and Cerejeira M.J., 2002. Evaluation of Pesticide Contamination of Ground Water in Two Agricultural Areas of Portugal. Int. J. Environ. Anal. Chem., 82(8-9), 601-609.
  • Bouyoucos G.J., 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J., 54(5), 464-465.
  • Broznic D. and Milin C., 2012. Effect of temperature on sorptiondesorption processes of imidacloprid in soils of Croatian coastal regions. J. Environ. Sci. Health., 47(8), 779-794.
  • Calvet R., 1989. Adsorption of organic chemicals in soils. Environ. Health Perspect., 83(3-4), 145-177.
  • Carter M.R., 1993. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science Publications, Ottawa, Ontario, Canada.
  • Cox L., Koskinen W.C., and Yen P.Y., 1997. Sorption-desorption of imidacloprid and its metabolites in soils. J. Agri. Fd. Chem., 45(4), 1468-1472.
  • Crisanto T., Sanchez-Martin M.J., and Sanchez-Camazano M., 2000. Mobility of pesticides in soils. Influence of soil properties and pesticide structure. Toxicological. Environ. Chemistry, 47, 97-104.
  • ElShafei G.S., Nasr I.N., Hassan A.S.M., and Mohammad S.G.M., 2009. Kinetics and thermodynamics of adsorption of cadusafos on soils. J. Hazard. Mater., 172(2-3), 1608-1616.
  • Gao J.P., Maguhn J., Spitzauer P., and Kettrup A., 1998. Sorption of Pesticides in the Sediment of the Teufelesweiher Pond (Southern Germany). I: Equilibrium Assessments, Effect of Organic Carbon Content and pH. Water Res., 32(5),1662-1672.
  • Garg U., Kaur M.P., Jawa G.K., Sud D., and Garg V.K., 2008. Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J. Hazard. Mater., 154(1-3), 1149-1157.
  • Giles C.H., McEvan T.H., Nakhwa S.N., and Smith D., 1960. Studies in adsorption. Part XI, A System of classification on solution adsorption isotherms, and its use in diagnosis of adsorption mechanism and in measurement of specific surface areas of solids. J. Chem. Soc., 1, 3973-3993.
  • Hance R.J., 1977. The adsorption of atraton and momuron by soils at different water contents. Weed Res., 17, 137-201.
  • Islam M.A., Sakkas V., and Albanis T., 2010. Adsorptiondesorption study of bromophos methyl and quinalphos in Greek soils. Int. J. Environ. Anal. Chem., 90(3-6), 357-368.
  • Ismail B.S., Enoma A.O.S., Cheah U.B., Lum K.Y., and Malik Z., 2002. Adsorption, desorption, and mobility of two insecticides in Malaysian agricultural soil. J. Environ. Sci. Health., 37(4), 355-364.
  • Kaur P. and Sud D., 2010. Adsorption kinetics, isotherms, and desorption of monocrotophos and dichlorvos on various Indian soils. Clean – Soil Air Water, 39(12), 1060-1067.
  • Krishna K.R. and Philip L., 2008. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J. Hazard. Mater., 160(2-3), 559-567.
  • Kuisi M.A., 2002. Adsorption of dimethoate and 2,4-D on Jordan valley soils and their environmental impact. Environ. Geology, 42(6), 666-667.
  • Lalah J.O., Njogu S.N., and Wandiga S.O., 2009. The effect of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ ions on pesticide adsorption and mobility in a tropical soil. Bull. Environ. Contam. Toxicol., 83, 352-358.
  • Liu L.C., Cibes-Viade H., and Koo F.K.S., 1970. Adsorption of ametryne and diuron by soils. Weed Sci., 18(4), 470-474.
  • OECD (Organization for Economic Co-operation and Development), 2000. In OECD Guidelines for Testing of Chemicals – Test Guideline 106: Adsorption-desorption using batch equilibrium method in Soils, Environ. Health and Safety Division, OECD Environ. Directorate, Paris, France.
  • Oladoja N.A., Aboluwoye C.O., and Oladimeji Y.B., 2008. Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat. Turk. J. Eng. Environ. Sci., 32(5), 303-312.
  • Parr T.F. and Smith S., 1974. Degradation of DDT in an evergardes muck as affected by lime, ferrous ion and aerobiosis. Soil Sci., 118, 45-51.
  • Patakioutas G. and Albanis T.A., 2002. Adsorption-desorption studies of alachlor, metolachlor, EPTC, chlorothalonil and pirimiphos-methyl in contrasting soils. Pest Manag. Sci., 58(4), 352-362.
  • Peng F., He P.W., Luo Y., Lu X., Liang Y., and Fu J., 2012. Adsorption of Phosphate by Biomass Char Deriving from Fast Pyrolysis of Biomass Waste. Clean – Soil Air Water, 40(5), 493-498.
  • Roth E., Mancier V., and Fabre B. 2012. Adsorption of cadmium on different granulometric soil fractions: Influence of organic matter and temperature. Geoderma, 189-190, 133-143.
  • Rotich H.K., Zhang Z., Zhao Y., and Li J., 2004. The adsorption behaviour of three organophosphorus pesticides in peat and soil samples and their degradation in aqueous solutions at different temperatures and pH values. Int. J. Environ. Anal. Chem., 84(4), 289-301.
  • Ryan D.K., Thompson C.R., and Weber J.H., 1983. Comparison of Mn2+, Co2+ and Cu2+ binding to fulvic acids as measured by fluorescence quenching, Can. J. Chem., 61, 1505-1509.
  • Swann R.L., Laskowski D.A., McCall P.J., Kuy K.V., and Dishburger H.J., 1983. A rapid method for the estimation of the environmental parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility. Residue Rev., 85, 17-28.
  • Vagi M.C., Petsas A.S., Kostopoulou M.N., and Lekkas T.D., 2010. Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. Int. J. Environ. Anal. Chem., 90(3- 6), 369-389.
  • Vig K., Singh D.K., Agarwal H.C., Dhawan A.K., and Dureja P., 2001. Insecticide residues in cotton crop soil. J. Environ. Sci. Health., 36(4), 421-434.
  • Von O.B., Kordel W., and Klein W., 1991. Sorption of nonpolar and polar compounds to soils: Processes, measurement and experience with the applicability of the modified OECDguidelines. Chemosphere, 22(3-4), 285-304.
  • Weber J.R. and Morris J.C., 1963. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31-59.
  • Weber W.J.J., McGinley P.M., and Katz L.E., 1991. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Res., 25(5), 499-528.
  • Yaron B. and Saltzman S., 1972. Influence of water and temperature on adsorption of parathion by soil. Soil Sci. Soc. Am. J., 36(3), 536-538.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0ce402e6-0084-40a4-92ab-9e29a10cce99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.