Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |
Tytuł artykułu

Do application rates of wastewater sewage sludge affect the removal of PAHs from alkaline saline soil?

Warianty tytułu
Języki publikacji
The application of wastewater sludge to an alkaline saline soil of Texcoco accelerated removal of polycyclic aromatic hydrocarbons (PAHs), but not always. As part of a study into factors that might affect dissipation of PAHs from soil, the effect of different application rates (0, 3, 9, 18, and 36 tons dry sludge ha-1) of wastewater sludge on removal of phenanthrene and anthracene was studied in an alkaline saline soil with pH 9.7 and electrolytic conductivity (EC) of 7.6 dS m-1. The dynamics of phenanthrene, anthracene, ammonium, nitrite, nitrate, and CO2 were monitored for 56 days. Application of wastewater increased the removal rate of the PAHs independent of the concentration applied, and between 70 and 79% of the phenanthrene and 69 and 79% of the anthracene was removed after 56 days. Spiking soil with PAHs increased emissions of CO2 while applying sludge further increased it. It was found that the removal of PAHs was initially low as the amount of phenanthrene and anthracene decreased after only 14 days. The addition of wastewater sludge increased the removal of phenanthrene and anthracene, but the effect was independent of the application rate or the PAHs studied. Spiking soil with PAHs increased emissions of CO2 and reduced the amount of NH4+ and NO3- in soil.
Słowa kluczowe
Opis fizyczny
  • Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico
  • Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila. C.P. 25900, Mexico
  • Laboratory of Soil Ecology, GIP, Cinvestav, Mexico D.F, C.P. 07360 Mexico
  • 1. KAMAL A., CINCINELLI A., MARTELLINI T., MALIK R.R. A review of PAH exposure from the combustion of biomass fuel and their less surveyed effect on the blood parameters. Environ. Sci. Pollut. R. 22 (6), 4076, 2015.
  • 2. PAWELCZAK M., DAWIDOWSKA-MARYNOWICZ B., OSZYWA B., KOSZALKOWSKA M., KRECIDLO L., KRZYSKO-LUPICKA T. Influence of bioremediation stimulators in soil on development of oat seedlings (Avena sativa) and their aminopeptidase activity. Arch. Environ. Prot. 41 (1), 24, 2015.
  • 3. ANTONIADIS V., KOUTROUBAS S.D., FOTIADIS S. Nitrogen, phosphorus, and potassium availability in manureand sewage sludge-applied soil. Commun. Soil Sci. Plan. 46 (10), 393, 2015.
  • 4. FERNÁNDEZ-LUQUEÑO F., LÓPEZ-VALDEZ F., DENDOOVEN L., LUNA-SUAREZ S., CEBALLOSRAMIREZJ.M. Why wastewater sludge stimulates and accelerates removal of PAHs in polluted soils? Appl. Soil Ecol. 101, 1, 2016.
  • 5. SONG Y.F., OU Z.Q., SUN T.H., TEDILER A., LORINCI G., KETTRUP A. Analytical method for polycyclic aromatic hydrocarbons (PAHs) in soil and plants samples. Chin. J. Appl. Ecol. 6, 92, 1995.
  • 6. FERNÁNDEZ-LUQUEÑO F., THALASSO F., LUNAGUIDO M.L. CEBALLOS-RAMÍREZ J.M., ORDOÑEZRUIZ I.M., DENDOOVEN L. Flocculant in wastewayter affects dynamics of inorganic N and accelerates removal of phenanthrene and anthracene in soil. J. Environ. Manage. 90 (8), 2813, 2009.
  • 7. SAS Institute. Statistic guide for personal computers. Version 6.04, Edn. SAS Institute, Cary. 1989.
  • 8. SCELZA R., RAO M.A., GIANFREDA L. Effects of compost and of bacterial cells on the decontamination and the chemical and biological properties of an agricultural soil artificially contaminated with phenanthrene. Soil Biol. Biochem. 39 (6), 1303, 2007.
  • 9. YANG H., SU Y.H., ZHU Y.G., CHEN M.M., CHEN D.B., LIU Y.X. Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without Vegetation. J. Environ. Sci Heal. A, 42 (1), 65, 2007.
  • 10. LEE E.H., CHO K.S. 2008. Characterization of cyclohexane and hexane degradation by Rhodococcus sp EC1.Chemosphere 71 (9), 1738, 2008.
  • 11. LEE P.H., CHAO K.P. ONG S.K. Solvent-water extraction method for the evaluation of polycyclic aromatic hydrocarbons bioavailability in coal-tar-contaminated soils, Int. J. Environ. Sci. Te. 11 (7), 1999, 2014.
  • 12. NIKOLOPOULOU M., EICKENBUSCH P., PASADAKIS N., VENIERI D., KALOGERAKIS N. Microcosm evaluation of autochthonous bioaugmentation to combat marine oil spills. New Biotechnol. 30 (6), 734, 2013.
  • 13. CASTILLO-CARVAJAL L.C., SANZ-MARTIN J.L., BARRAGAN-HUERTA B.E. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review. Environ. Sci. Pollut. R. 21 (16), 9578, 2014.
  • 14. WANG J.B., WANG C., HUANG Q.Y., DING F., HE X.W. Adsorption of PAHs on the sediments from the yellow riverdelta as a function of particle size and salinity. Soil Sediment Contam. 24 (2), 103, 2015.
  • 15. BETANCUR-GALVIS L. A., ALVAREZ-BERNAL D., RAMOS-VALDIVIA A.C., DENDOOVEN L. Bioremediation of polycyclic aromatic hydrocarbon-contaminated salinealkaline soils of the former Lake Texcoco. Chemosphere 62 (11), 1749, 2006.
  • 16. DENI J., PENNINCKX M.J. Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil. Appl. Environ. Microb. 65(9), 4008-13, 1999.
  • 17. BUSBY R.R., TORBERT H.A, GEBHART D.L. Carbon and nitrogen mineralization of non-composted and composted municipal solid waste in sandy soils. Soil Biol. Biochem. 39 (6), 1277, 2007.
  • 18. FERNANDEZ-LUQUEÑO F., LOPEZ-VALDEZ F., VALERIO-RODRÍGUEZ M.F., PARIONA N., HERNÁNDEZLOPEZ J.L., GARCIA-ORTIZ I., LOPEZ-BALTAZAR J., VEGA-SANCHEZ M.C., ESPINOSA-ZAPATA R., ACOSTA-GALLEGOS J.A. Effects of nanofertilizers on plant growth and development, and their interrelationship with the environmental. In: Fertilizers: components, uses in agriculture and environmental impact, LOPEZ-VALDEZ F., FERNANDEZ-LUQUEÑO F. (Eds.), NOVA Science. New York, USA, 211-24, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.