PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 1 |
Tytuł artykułu

Molecular characterization of the cry gene profile of Bacillus thuringiensis isolated from a caribbean region of Colombia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to characterize native strains of Bacillus thuringiensis of the Colombian Caribbean with toxic effect against insect vectors, 28 samples of bacteria identified as B. thuringiensis were isolated from different soils and muds around the city of Valledupar. Using a biological test, five isolates of B. thuringiensis showed toxic effect against larvae of Aedes aegypti. PCR methods were used to detect cry1, cry2, cry4B, cry10 and cyt1 genes. Cry1 and cry2 genes were detected in 35.7% and 32.1% of the 28 isolates analyzed, respectively. Surprisingly, reduced lengths of cry4B gene segments were detected in 28.6% of B. thuringiensis samples. The presence of cry10 or cyt1 was not detected in any of the 28 samples of B. thuringiensis, despite the high sensitivity of the assays used. The results show that B. thuringiensis samples from the Colombian Caribbean have atypical characteristics compared to those of Latin America and elsewhere in the world, which is consistent with the idea that the geographic origin of B. thuringiensis samples is associated with their biological and genetic characteristics.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
67
Numer
1
Opis fizyczny
p.19-26,fig.,ref.
Twórcy
autor
  • Research Group of Parasitology and Agroecology Mileno, Popular University of Cesar, Cesar, Colombia
autor
  • Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
autor
  • UNIMOL Laboratory, Tropical Medicine, University of Cartagena, SUE-Caribe, Colombia
autor
  • UNIMOL Group, Department of Pharmacie, Faculty of Science, National University of Colombia, Bogota, Colombia
autor
  • Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
autor
  • Human Genetic Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
autor
  • Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
Bibliografia
  • Arango J.A., M. Romero and S. Orduz. 2002. Diversity of Bacillus thuringiensis strains from Colombia with insecticidal activity against Spodoptera frugiperda (Lepidoptera:Noctuidae). J. Appl. Microbiol. 92: 466–474.
  • Arunachalam N., S. Tana, F. Espino, P. Kittayapong, W. Abeyewickreme, K.T. Wai, B.K. Tyagi, A. Kroeger, J. Sommerfeldg and M. Petzold. 2010. Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull. World Health Organ. 88: 173–184.
  • Ben-Dov E, Zaritsky A, Dahan E, Brak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A., N. Berezina and Y. Morgalith. 1997. Extended Screening by PCR for Seven cry-Group Genes from Field-Collected Strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883–4890.
  • Berry C., S. O’Neil, E. Ben-Dov, A.F. Jones, L. Murphy, M.A. Quail,M.T. Holden, D. Harris, A. Zaritsky and J. Parkhill. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082–5095.
  • Boyce R., A. Lenhart, A. Kroeger, R. Velayudhan, B. Roberts and O. Horstick. 2013. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Trop. Med. Int. Health.18: 564–5677.
  • Bravo A., S. Sarabia, L. López, E. Ontiveros, C. Abarca, A. Ortiz, M.Ortiz, L. Lina, F.J. Villalobos, G. Peña and others. 1998. Characterization of cry Genes in a Mexican Bacillus thuringiensis Strain Collection. Appl. Environ. Microbiol. 64: 4965–4972.
  • Bravo A., I. Gómez, H. Porta, B.I. García-Gómez, C. Rodriguez-Almazan, L. Pardo and M. Soberón. 2013. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial. Biotech. 6: 17–26.
  • Camacho-Millán R., E. M., Aguilar-Medina, H. Quezada, Ó. Medina-Contreras, G. Patiño-López, H. M., Cárdenas-Cota and R. Ramos-Payán. 2017. Characterization of Cry toxins from autochthonous Bacillus thuringiensis isolates from Mexico. Bol. Med. Hosp. Infant. Mex. 74: 193–199.
  • Cantón P., E. Reyes and I.D. Escudero. 2011. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides 32: 595–600.
  • Crickmore N., D.R. Zeigler, J. Feitelson, E. Schnepf , J. Van Rie,D. Lereclus, J.Baum and D.H. Dean. 1998. Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev. 62: 807–813.
  • Grisales N., R. Poupardin, S. Gomez, I. Fonseca-Gonzalez, H. Ranson and A. Lenhart. 2013. Temephos resistance in Aedes aegypti in Colombia compromises dengue vector control. PLoS Neglected Trop. Dis. 7(9). doi:org/10.1371/journal.pntd.0002438
  • Hemingway J., N.J. Hawkes, L. McCarroll and H. Ranson. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect. Biochem. Mol. Biol. 34: 653–665.
  • Hernández-Fernández J., L. Ramírez, N. Ramírez, L.S. Fuentes and J. Jiménez. 2011. Molecular and biological characterization of native Bacillus thuringiensis strains for controlling tomato leafminer (Tuta absoluta Meyrick) (Lepidoptera: Gelechiidae) in Colombia. World J. Microbiol. Biotechnol. 27: 579–590.
  • Ibarra J.E., M.C. Del Rincón, S. Orduz, D. Noriega, G. Benintende, R. Monnerat, L. Regis, C.M. De Oliveira, H. Lanz, M.H. Rodríguez and others. 2003. Diversity of Bacillus thurin-giensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269–5274.
  • Ingabire C. M., E. Hakizimana, A. Rulisa, F. Kateera, B. Van Den Borne, C.M. Muvunyi, L. Mutesa, M.e Van Vugt, C.J.M. Koenraadt, W. Takken and J. Alaii. 2017. Community‑based biological control of malaria mosquitoes using Bacillus thuringiensis var. israelensis (Bti) in Rwanda: community awareness, acceptance and participation. Malar. J. 16: 1–13.
  • Jara S., P. Maduell and S. Orduz. 2006. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J. Appl. Microbiol. 101: 117–124.
  • Kondo S., N.Tamura, A. Kunitate, M. Hattori, A. Akashi andI. Ohmori. 1987. Cloning and nucleotide sequencing of two insecticidal delta-endotoxin genes from Bacillus thuringiensis var. kurstaki HD-1 DNA. Agric. Biol. Chem. 51: 455–463.
  • López-Pazos S.A., J.W. Martínez, A.X. Castillo and J.A. Cerón. 2009. Presence and significance of Bacillus thuringiensis Cry proteins associated with the Andean weevil Premnotrypes vorax (Coleoptera: Curculionidae). Int. J. Trop. Biol. 57: 1235–1243.
  • Macoris M.L., M.T. Andrighetti, V.C. Otrera, L.R. Carvalho,A.L. Caldas Junior and W.G. Brogdon. 2007. Association of insecticide use and alteration on Aedes aegypti susceptibility status. Mem. Inst. Oswaldo Cruz 102: 895–900.
  • Mandal C.C., S. Gayen, A. Basu, K.S. Ghosh, S. Dasgupta, M.K. Maiti and S.K. Sen. 2007. Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein. Eng. Des. Sel. 20: 599–606.
  • Martínez C. and P. Caballero. 2002. Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats, Oxford. J. Appl. Microbiol. 92: 745–752.
  • Morse R.J., T. Yamamoto and R.M. Stroud. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409–417.
  • Pérez M.P., D.H. Sauka, M.I. Onco, M.F. Berretta and G.B. Benintende. 2016. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae. Rev Argent Microbiol. 49: 264–272.
  • Pinto L.M.N., N.C. Dörr, A.P.A. Ribeiro, S.M. De Salles, J.V. De Oliveira, V.G. Menezes, M. Lidia and L.M. Fiuza. 2012. Bacillus thurin-giensis monogenic strains: screening and interactions with insecticides used against rice pests. Brazilian J. Microbiol. 2012: 618–626.
  • Porcar M. and P. Caballero. 2000. Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. J. Appl. Microbiol. 89: 309–316.
  • Prabakaran G. and S.L. Hoti. 2008. Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counter ions for mosquito control. Curr. Microbiol. 57: 111–114.
  • Ruiz L.M., C. Segura, J. Trujillo and S. Orduz. 2004. In vivo binding of the cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz. 92: 257–262.
  • Salazar E and J. Araya. 2001. Respuesta de la polilla del tomate, Tutaabsoluta (Meyrick), a insecticidas en Arica. Agric. Tec. 61: 429–435.
  • Segura C., F. Guzman, M. Patarroyo and S. Orduz. 2000. Activation pattern and toxicity of the Cry11Bb1 toxin of Bacillus thuringiensis subsp. medellin. J. Invertebr. Pathol. 76: 56–62.
  • Shingote P.R., M.P. Moharil, D.R. Dhumale, D.R. Dhumale,P.V. Jadhav, N.S. Satpute and M.S. Dudhare. 2013. Screening of vip1/vip2 binary toxin gene and its isolation and cloning from local Bacillus thuringiensis isolates. Science Asia 39: 620–624.
  • Soares-da-Silva J., S.G. Queirósc, J.S. de Aguiar, J.L. Vianac, M. Netac, M.C. da Silvac, V.C.S. Pinheiro, R.A. Polanczyk, G.A. Carvalho-Zilsee and W. P. Tadeib. 2017. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta Tropica. 176: 197–205.
  • Soderlund D.M. and D.C. Knipple. 2003. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect. Biochem. Mol. Biol. 33: 563–577.
  • Uribe D., W. Martinez and J. Ceron. 2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invertebr. Pathol. 82: 119–127.
  • WHO. 2005. Guidelines for Laboratory and Field Testing ofMosquito Larvicides. Commu-nicable Disease Control, Pre-vention and Eradication, WHO Pesticide Evaluation Scheme, Ginebra. Suiza. 41 pp.
  • WHO. 2012. World Malaria Report 2012. Geneva World Health Organization; 2012. http://www.who.int/malaria/publications/world_malaria_report_2012/report/en/;.14.05.2015.
  • WHO 2016. Zika Strategic Response Plan Updated 30 June 2016 WHO/ZIKV/SRF/16.3
  • Zhao J-Z., J. Cao, H.L. Collins, S.L. Bates, R.T. Roush, E.D. Earle and A.M. Shelton. 2005. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 102: 8426–8430.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-03821b9d-cf0b-4c59-a060-76d1abb34c4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.