PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 74 | 4 |
Tytuł artykułu

Sex differences of human corpus callosum revealed by polar coordinate system: magnetic resonance imaging study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Evaluation of morphological and size changes related to various pathological conditions of the corpus callosum (CC) requires the data about sex dimorphism of the CC. The purpose of our study is to define potential morphological sex differences of the CC by the use of polar coordinate system as a system of measurements. Materials and methods: After division of the CC into three equal segments by the use of polar coordinate system, we investigated the length of the hemisphere (A-A’), the CC size as its midsagittal section area (CCA), the size of its segments (C1, C2, C3), thickness of the thinnest part of the CC (TCC) and the angular coordinate (α angle) of dorsal point of the TCC in a sample of 30 human brains magnetic resonance images (15 males and 15 females, age 20–50 years). Results: We found significantly larger CCA, C3 segment and the TCC in males. Statistically significant correlation in both, males and females, was found between parameters of the CCA and of all of its segments (C1, C2, C3), the C1 and C2, the C2 and C3 segments, as well as like as between the C2 and TCC. Sex differences were also in findings of significant correlation between the C1 and C3 segments, between CCA and TCC, and of significant negative correlation between the α angle and A-A’ only in females. Conclusions: We concluded that the use of polar coordinate system appropriately reflects the anatomical and encephalometric characteristics of human CC. (Folia Morphol 2015; 74, 4: 414–420)
Słowa kluczowe
Wydawca
-
Czasopismo
Rocznik
Tom
74
Numer
4
Opis fizyczny
p.414-420,fig.,ref.
Twórcy
  • Department of Anatomy, Faculty of Medicine, University of Banja Luka, Bosnia and Hercegovina
autor
  • Institute of Anatomy “Dr Niko Miljanić”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
autor
  • Institute of Clinical Radiology, Clinical Centre of Banja Luka, Republic of Srpska, Bosnia and Hercegovina
autor
  • Institute of Clinical Radiology, Clinical Centre of Banja Luka, Republic of Srpska, Bosnia and Hercegovina
  • Department of Physical Medicine and Rehabilitation “Dr M Zotović”, Banja Luka, Republic of Srpska, Bosnia and Hercegovina
autor
  • Institute of Anatomy “Dr Niko Miljanić”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
Bibliografia
  • 1. Allen LS, Richey MF, Chai YM, Gorski RA (1991) Sex differences in the corpus callosum of the living human being. J Neurosci, 11: 933–942.
  • 2. Ardekani AB, Figarsky K, Sidtis JJ (2013) Sexual dimorphism in the human corpus callosum: An MRI study using the OASIS brain database. Cerebral Cortex, 23: 2514–2520.
  • 3. Bishop KM, Wahlsten D (1997) Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev, 21: 581–601.
  • 4. Clarke S, Kraftsik R, Van der Loos H, Innocenti GM (1989) Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol, 280: 213–230.
  • 5. Connaly E, Hughes-Hallet D, Gleason AM (2010) Functions modelling change: a preparation for calculus. 4th Ed. Wiley, New York, pp. 494–497.
  • 6. Constant D, Ruther H (1996) Sexual dimorphism in the human corpus callosum? A comparison of methodologies. Brain Res, 7727: 99–196.
  • 7. Davatzikos C, Vaillant M, Resnick SM, Prince JL, Letovsky S, Bryan RN (1996) A computerized approach for morphological analysis of the corpus callosum. J Comput Assist Tomogr, 20: 88–97.
  • 8. Dubb A, Gur R, Avants B, Gee J (2003) Characterization of sexual dimorphism in the human corpus callosum. Neuroimage, 20: 512–519.
  • 9. De Lacoste-Utamsing C, Holloway RL (1982) Sexual dimorphism in the human corpus callosum. Science, 216: 1431–1432.
  • 10. Ferrario VF, Sforza C, Serrao G, Frattini T, Del Favero C (1994) Shape of the Human Corpus Callosum. Elliptic Fourier Analysis on Midsagittal Magnetic Resonance Scans. Invest Radiol, 29:677-81.
  • 11. Hewitt W (1962) The development of the human corpus callosum. J Anat (Lond), 96: 355–358.
  • 12. Herron TJ, Kang X, Woods DL (2012) Automated measurement of the human corpus callosum using MRI. Frontiers Neuroinformatics, 6: 1–15.
  • 13. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32: 989–994.
  • 14. Jang Sung H, Kwon Hyeok G (2013) Neural connectivity of the posterior body of the fornix in the human brain: diffusion tensor imaging study. Neurosc Lett, 549: 116–119.
  • 15. Jancke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H (1997) The relationship between corpus callosum size and forebrain volume. Cerebral Cortex, 7: 48–56.
  • 16. Kier EL, Truwit CL (1997) The lamina rostralis: modification of concepts concerning the anatomy, embryology, and MR appearance of the rostrum of the corpus callosum. AJNR, 18: 715–722.
  • 17. Lang J, Ederer M (1980) Ueber Form und Groesse des Corpus Callosum und das Septum pellucidum. Gegenbaurs Morphol Jahrb, 126: 949–958.
  • 18. Luders E, Toga AW, Thompson PM (2014) Why size matters: Differences in brain volume account for apparent sex differences in callosal anatomy. The sexual dimorphism of the corpus callosum. Neuroimage, 84: 820–824.
  • 19. Malobabić S, Simić S, Marinković S (1985) Significance of the encephalometric parameters of human CC and medial hemispheric surface. Anat Anz, 159: 231–239.
  • 20. Malobabić S, Bogdanović D, Teofilovski G (1987) Morphology of the Human Corpus Callosum: The shape of its mediosagittal section. Gegenbaurs Morphol Jahrb, 133: 403–410.
  • 21. Malobabić S, Prostran M (1992) Morphology suggests the existence of different functional systems in human corpus callosum. Iugosl Physiol Pharmacol Acta, 28 (suppl. 9): 105–110.
  • 22. Pavlović S, Stefanović N, Malobabić S, Babić Z, Kostić A, Pavlović M (2009) Longitudinal striae of the human fornix: shape, relations and variations. Surg Radiol Anat, 31: 501–506.
  • 23. Rakic P, Yakovlev PI (1968) Development of the Corpus callosum and cavum septi in man. J Comp Neurol, 132: 45–72.
  • 24. Sampaio A, Bouix S, Sousa N, Vasconcelo C, Fernandez M, Shenton M.E, Goncalves FO (2012) Morphometry of corpus callosum in Williams syndrome: shape as an index of neural development. Brain Struct Funct, 218: 711–720.
  • 25. Spasojevic G, Stojanović Z, Šuščević D, Malobabić S (2006) Sexual dimorphism of the human corpus callosum--digital morphometric study. In Serbian. Vojnosanit Pregl, 63: 933–938.
  • 26. Steinmetz H, Staiger JF, Schlaug G, Huang Y, Jancke L (1995) Corpus callosum and brain volume in women and men. Neuroreport, 6: 1002–1004.
  • 27. Westerhausen R, Kreuder F, Dos Santos Sequeira S, Walter C, Woerner W, Wittling RA, Schweiger E, Wittling W (2004) Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Brain Res Cogn Brain Res, 21: 418–426.
  • 28. Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem study. Brain, 112: 799–835.
  • 29. World Medical Association Declaration Of Helsinki: Ethical Principles for Medical Research Involving Human Subjects, 64th WMA General Assembly, Fortaleza, Brazil, October 2013 Available at :http://www.wma.net/en/30publications/10policies/b3/index.html. Accessed August 25, 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0063600e-a47f-4605-a39d-eb30cfa7c246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.