PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 19 | 4 | 597-608
Tytuł artykułu

Measurement of activated sludge particle diameters using laser diffraction method / Pomiary średnicy cząstek osadu czynnego za pomocą metody dyfrakcji laserowej

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a study on the possibility of using the laser diffraction method for measuring the size of the activated sludge particles. Susceptibility of the particles to mechanical disintegration, dependent on the programmed value of stirring intensity, was observed (stirring was caused by required dynamic flow of analysed suspension through the measurement unit). According to the conclusions presented in this paper, it may be assumed that the laser diffraction method can be applied for measurement of activated sludge particle diameters under the following conditions: 1) the size of activated sludge particles measured by the laser diffraction method is not a real value, but after standardisation of measurement conditions can be treated as a parameter describing the sludge; 2) the particle diameters of activated sludge should be stabilised before the measurement, eg by mixing in the measurement unit or by ultrasound waves application.
PL
Praca dotyczy oceny możliwości wykorzystania dyfrakcji laserowej do badania rozmiarów kłaczków osadu czynnego. W czasie pomiarów zaobserwowano podatność analizowanych cząstek na zniszczenie mechaniczne zależną od zaprogramowanej intensywności mieszania (mieszanie i przepompowywanie jest wymagane w celu wymuszenia przepływu analizowanych zawiesin przez układ pomiarowy). Na podstawie wniosków opracowanych na podstawie prowadzonych badań można stwierdzić, iż metoda dyfrakcji laserowej może być stosowana do pomiarów rozmiarów kłaczków osadu czynnego pod następującymi warunkami: rozmiary kłaczków oraz pozostałych elementów osadu czynnego uzyskane w czasie pomiarów nie mogą być traktowane jako wartość bezpośrednia opisująca rozmiary kłaczka, lecz po standaryzacji warunków pomiarowych może być traktowana jako ilościowy parametr opisujący właściwości osadu czynnego. Przed pomiarem metodą dyfrakcji laserowej osad czynny powinien być uprzednio stabilizowany na przykład za pomocą mieszania w układzie pomiarowym bądź też za pomocą ultradźwięków.
Wydawca

Rocznik
Tom
19
Numer
4
Strony
597-608
Opis fizyczny
Daty
wydano
2012-11-01
online
2012-11-13
Twórcy
  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland, phone +48 81 744 50 61, fax +48 81 744 50 67, a.bieganowski@ipan.lublin.pl
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 81 538 43 22, fax +48 81 53 81 997, g.lagod@wis.pol.lublin.pl
  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland, phone +48 81 744 50 61, fax +48 81 744 50 67
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 81 538 43 22, fax +48 81 53 81 997
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland, phone +48 81 538 43 22, fax +48 81 53 81 997
autor
  • Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin, Poland, phone +48 81 744 50 61, fax +48 81 744 50 67
Bibliografia
  • [1] Curds CR. The role of protozoa in the activated-sludge process. Amer Zool. 1973;13(1):161-169.
  • [2] Klimowicz H. The importance of microfauna in sewage treatment with activated sludge (in Polish). Warszawa: Zakład Wydawnictw Instytutu Kształtowania Środowiska; 1983.
  • [3] Madoni P. A sludge biotic index (SBI) for evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Res. 1994;28(1):67-75. DOI: 10.1016/0043-1354(94)90120-1.[Crossref]
  • [4] Eikelboom DH. Process control of activated sludge plants by microscopic investigation. London: IWA Publishing; 2000.
  • [5] Montusiewicz A, Malicki J, Łagód G, Chomczynska M. Estimating the efficiency of wastewater treatment in activated sludge systems by biomonitoring. In: Pawlowski L, Dudzinska M, Pawlowski A. editors. Environ Eng. London: Taylor and Francis Group; 2007:47-54.
  • [6] Arregui L, Serrano S, Linares M, Pérez-Uz B, Guinea A. Ciliate contributions to bioaggeregation: laboratory assays with axenic cultures of Tetrahymena thermophila. Int. Microbiol. 2007;10:91-96. DOI: 10.2436/20.1501.01.13.[PubMed][Crossref][WoS]
  • [7] Arregui L, Linares M, Pérez-Uz B, Guinea A, Serrano S. Involvement of crawling and attached ciliates in the aggregation of particles in wastewater treatment plants. Air Soil Water Res. 2009;1:13-19.
  • [8] Chomczyńska M, Montusiewicz A, Malicki J, Łagód G. Application of saprobes for bioindication of wastewater quality. Environ Eng Sci. 2009;26(2):289-295. DOI:10.1089/ees.2007.0311.[Crossref]
  • [9] Bitton G. Wastewater Microbiology. New Jersey: Hoboken, John Wiley & Sons Inc.; 2005.
  • [10] Gerardi MH. Wastewater Bacteria. New Jersey: Hoboken, John Wiley & Sons Inc.; 2006.
  • [11] Liwarska-Bizukojc E. Application of image analysis techniques in activated sludge wastewater treatment process. Biotechnol Lett. 2005;27:1427-1433. DOI: 10.1007/s10529-005-1303-2.[Crossref]
  • [12] Eikelboom DH, van Buijsen HJJ. Microscopic Sludge Investigation Manual. 1st edition (in Polish). Szczecin: Sejdel-Przywecki; 1999.
  • [13] Quevauviller P, Thomas O, Van Der Beken A. Wastewater Quality Monitoring and Treatment. Chichester: John Wiley & Sons Ltd; 2006.
  • [14] Łagód G, Malicki J, Chomczyńska M, Montusiewicz A. Interpretation of the results of wastewater quality biomonitoring using saprobes. Environ Eng Sci. 2007;24(7):873-879. DOI:10.1089/ees.2006.0090.[WoS][Crossref]
  • [15] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. Proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):369-377.
  • [16] Brzezińska M, Sokołowska Z, Alekseeva T, Alekseev A, Hajnos M, Szarlip P. Some characteristics of organic soils irrigated with municipal wastewater. Land Degrad Dev. 2011;22:586-595. DOI: 10.1002/ldr.1036[Crossref][WoS]
  • [17] Włodarczyk T, Witkowska-Walczak B, Majewska U. Soil profile as a natural membrane for heavy metals from wastewater. Int. Agrophys. 2012;26:71-80. DOI: 10.2478/v10247-012-0011-0.[Crossref][WoS]
  • [18] Ben Fredj F, Han J, Irie M, Funamizu N, Ghrabi A, Isoda H. Assessment of wastewater-irrigated soil containing heavy metals and establishment of specific biomarkers. Ecotoxicol Environ Saf. 2012;84:54-62. DOI:10.1016/j.ecoenv.2012.06.020.[Crossref][PubMed]
  • [19] Malicki J, Montusiewicz A, Bieganowski A. Improvement of counting helminth eggs with internal standard. Water Res. 2001; 35:2333-2335. DOI: 10.1016/S0043-1354(00)00517-0[PubMed][Crossref]
  • [20] Jezierska-Tys S, Frąc M, Tys J. Microbiological hazards resulting from application of dairy sewage sludge: effects on occurrence of pathogenic microorganisms in soil. J. Toxicol. Environ. Health - Part A. 2010;73:1194-1201. DOI: 10.1080/15287394.2010.491777.[WoS][Crossref]
  • [21] Stevik TK, Aa K, Ausland G, Hanssen JF. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 2004;38:1355-1367. DOI: 10.1016/j.watres.2003.12.024.[PubMed][Crossref]
  • [22] Hopkins BM. A quantitative image analysis system. Opt Eng. 1976;15:236-240.
  • [23] Barbusiński K, Kościelniak H. Influence of substrate loading intensity on flock size in activated sludge process. Water Res. 1995;29(7):1703-1710.[Crossref]
  • [24] Neis U, Tiehm A. Particle size analysis in primary and secondary waste water effluents. Water Sci Technol. 1997;36(4):151-158. DOI:10.1016/S0273-1223(97)00434-4.[Crossref]
  • [25] Hilligardt D, Hoffmann E. Particle size analysis and sedimentation properties of activated sludge flocs. Water Sci Technol. 1997;36(4):167-175. DOI:/10.1016/S0273-1223(97)00436-8.
  • [26] Zhou J, Mavinic DS, Kelly HG. Flocs size profiling to characterise dewatering properties of thermophilic and mesophilic aerobically digested biosolids. In: Proc 7th CSCE Environ Eng Conf. May 30-June 2, Victoria, BC, Canada 2001.
  • [27] Dobrowolski R, Bieganowski A, Mroczek P, Ryżak M. Role of Periglacial Processes in Epikarst Morphogenesis: A Case Study from Chełm Chalk Quarry, Lublin Upland, Eastern Poland. Permafrost and Periglac Process. DOI: 10.1002/ppp.1750.[WoS][Crossref]
  • [28] Molinaroli E, De Falco G, Matteucci G, Guerzoni S. Sedimentation and time-of-transition techniques for measuring grain-size distributions in lagoonal flats: comparability of results. Sedimentology. 2011;58: 1407-1413. DOI: 10.1111/j.1365-3091.2010.01217.x.[Crossref][WoS]
  • [29] Vendelboe AL, Moldrup P, Schjonning P, Oyedele DJ, Jin Y, Scow KM, de Jonge L. W. Colloid release from soil aggregates: application of laser diffraction. Vadose Zone J. 2012;11. DOI: 10.2136/vzj2011.0070.[Crossref][WoS]
  • [30] Di Stefano C, Ferro V, Mirabile S. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosystems Engin. 2010;106:205-215. DOI: 10.1016/j.biosystemseng.2010.03.013.[Crossref]
  • [31] Taubner H, Roth B, Tippkötter R. Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis. J Plant Nutr Soil Sci. 2009;172:161-171. DOI: 10.1002/jpln.200800085.[WoS][Crossref]
  • [32] Ryżak M, Bieganowski A. Determination of particle size distribution of soil using laser diffraction - comparison with areometric method. Int Agrophys. 2010;24:177-181.
  • [33] de Boer GBJ, de Weerd C, Thoenes D, Goossens HWJ. Part Charact. 1987;4:14-19.
  • [34] Agrawal YC, McCave IN, Riley JB. Laser diffraction size analysis in Syvitski J.P.M. (ed.) Principles, methods and application of particle size analysis. Cambridge: Cambridge University Press; 1991.
  • [35] Biggs CA, Lant PA. Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res. 2000;34(9):2542-2550. DOI: 10.1016/S0043-1354(99)00431-5.[Crossref]
  • [36] Nopens I, Biggs CA, De Clerq B, Govoreanu R, Wilen BM, Lant P, Vanrolleghem PA. Modeling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM). Water Sci Technol. 2002;45(6):41-49.
  • [37] Guellil A, Thomas F, Block JC, Bersillon L, Ginestet P. Transfer of organic matter between wastewater and activated sludge flocs. Water Res. 2001;35(1):143-150. DOI: 10.1016/S0043-1354(00)00240-2.[Crossref][PubMed]
  • [38] Houghton JI, Burgess JE, Stephenson T. Off-line particle size analysis of digested sludge. Water Res. 2002;36:4643-4647. DOI: 10.1016/S0043-1354(02)00157-4.[Crossref][PubMed]
  • [39] Wilen BM, Balmer P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs. Water Res. 1999;33(2):391-400. DOI: 10.1016/S0043-1354(98)00208-5.[Crossref]
  • [40] Govoreanu R, Saveyn H, Van der Meeren P, Vanrolleghem PA. Simultaneous determiatnion of activated sludge floc size distribution by different techniques. Water Sci Technol. 2004;50(12):39-46.
  • [41] Weiss EL, Frock HN. Rapid analysis of particle size distributions by laser light scattering. Powder Technol. 1976;14(2):287-293. DOI: 10.1016/0032-5910(76)80077-0.[Crossref]
  • [42] ISO 13320 (2009). Particle size analysis - laser diffraction methods.
  • [43] Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L. Grain-size analysis by laser diffractometry: comparison with sieve-pipette method. Catena. 1998;32:193-208. DOI: 10.1016/S0341-8162(98)00051-4.[Crossref]
  • [44] Sperazza M, Moore JN, Hendrix MS. High-resolution particle size analysis of naturally occurring very finegrained sediment through laser diffractometry. J Sediment Res. 2004;74(5):736-743. DOI: 10.1306/031104740736.[Crossref]
  • [45] Arriaga FJ, Lowery B, Mays MD. A fast method for determining soil particle size distribution using a laser instrument. Soil Sci. 2006;171(9):663-674. DOI: 10.1097/01.ss.0000228056.92839.88.[Crossref][WoS]
  • [46] Ryżak M, Bieganowski A. Methodological aspects of determining soil particle size distribution using the laser diffraction method. J. Plant Nutr. Soil Sci. 2011;174(4):624-633. DOI: 10.1002/jpln.201000255.[Crossref][WoS]
  • [47] Malvern Operators Guide, Malvern Instruments Ltd., Malvern, UK 1999.
  • [48] Bieganowski A, Ryżak M, Witkowska-Walczak B. Determination of soil aggregate disintegration dynamics using laser diffraction. Clay Miner. 2010;45:23-34. DOI: 10.1180/claymin.2010.045.1.23.[WoS][Crossref]
  • [49] Sochan A, Bieganowski A, Ryżak M, Dobrowolski R, Bartmiński P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys. 2012;26:99-102. DOI: 10.2478/v10247-012-0015-9.[WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_v10216-011-0042-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.