PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 19 | 2 | 227-237
Tytuł artykułu

Application of ANN to the Sorption Equilibrium Modelling of Heavy Metal Ions on Clinoptilolite

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The latest achievements in the field of mathematical modelling include the application of artificial neural networks (ANN). A growing interest in the ANN is confirmed by the number of publications devoted to the applicability of ANN in chemical, process and environmental engineering. A recent dynamic development of ANN provided an efficient and universal tool that is used to solve many tasks, including modelling, approximation and identification of objects. The initial step of applying the network to a given process consists in the determination of weights of the proposed neural network structure. This is performed on the basis of training data. A network that is properly trained allows correct information to be obtained on the basis of other data which have not been used in the network training. In most cases the network training is performed on the basis of a known mathematical model. However, the training of a network can be also performed using experimental data. In this paper, the sorption isotherms were predicted by means of a multilayer perceptron (MLP). Calculations were made using a training program written in Matlab, which took advantage of the Lavenberg-Marquardt procedure. In the last decade a growing interest is observed in inexpensive and very cheap adsorbents to remove heavy metal ions. Clinoptilolite is the mineral sorbent extracted in Poland used to remove heavy metal ions from diluted solutions. Equilibrium experiments were carried out to estimate sorptivity of a clinoptilolite and its selectivity towards Cu(II), Zn(II) and Ni(II) ions for multicomponent solution. Calculations with the use of MLP enabled description of sorption isotherms for one, two and three ions which were present at the same time in the solution. The network also enabled an analysis of sorption of the single ion, taking into account the effect of its concentration.
PL
W ostatnich dekadach obserwuje się rosnące zainteresowanie zastosowaniem tanich adsorbentów w celu usuwania zanieczyszczeń z roztworów wodnych. Klinoptylolit jest sorbentem mineralnym wydobywanym w Polsce, stosowanym do usuwania jonów metali ciężkich z rozcieńczonych roztworów. Eksperymenty równowagi przeprowadzono w celu oszacowania efektywności sorpcji klinoptylolitu i jego selektywności wobec Cu(II), Zn(II) i Ni(II) w roztworach wieloskładnikowych. SSN umożliwiają obliczenia izoterm sorpcji dla jednego, dwóch lub trzech jonów jednocześnie obecnych w roztworze. W pracy izotermy sorpcji przewidywano za pomocą wielowarstwowego perceptronu (MLP). Obliczenia prowadzono za pomocą własnych algorytmów zgodnie z procedurą Matlaba z zastosowaniem metody uczenia Lavenberga-Marquardta.
Wydawca

Rocznik
Tom
19
Numer
2
Strony
227-237
Opis fizyczny
Daty
wydano
2012-01-01
online
2012-05-24
Twórcy
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 90-924 Łódź, Poland
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 90-924 Łódź, Poland
Bibliografia
  • Gomonaj VI, Golub NP, Szekeresh KY, Leboda R, Skubiszewska-Zięba J. Badania nad przydatnością zakarpackiego klinoptylolitu do sorpcji jonów Hg(II), Cr(III) i Ni(II) z roztworów wodnych. Ochr Środ. 1998;4(71):3-6.
  • Erdem E, Karapinar N. Donat R. The removal of heavy metal cations by natural zeolites. J Colloid Interf Sci. 2004;280:309-314. DOI: 10.1016/j.jcis.2004.08.028.[Crossref]
  • Sprynskyy M, Lebedynets M, Zbytniewski R, Namieśnik J, Buszewski B. Ammonium removal from aqueos solution by natura zeolite. Transcarpathian modernite: kinetics, equilibrium and column test. Sep Purif Technol. 2005;46:155-160. DOI: 10.1016/j.seppur.2005.05.004.[Crossref]
  • Kosobucki P, Kruk M, Buszewski B. Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresource Technol. 2008;99:5972-5976. DOI: 10.1016/j.biortech.2007.10.023.[Crossref][WoS]
  • Tomczak E, Sulikowski R. Opis równowagi i kinetyki sorpcji jonów metali ciężkich na klinoptylolicie. Inż Aparat Chem. 2010;1:113-15.
  • Tomczak E. Sorption equilibrium of heavy metal ions on modified chitosan beads. Ecol Chem Eng A. 2008;15(7):694-702.
  • Petrus R, Warchoł J. Heavy metal removal by clinoptilolite. An equilibrium study in multi-component system. Water Res. 2005;39:819-830. DOI: 10.1016/j.watres.2004.12.003.[Crossref]
  • Charlet L, Tournassat Ch. Fe(II)-Na(II)-Ca(II) cations exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride - metal ion pairs in seawater. Aquat Geochem. 2005;11:115-137. DOI: 10.1016/j.compchemeng.2010.05.012.[Crossref]
  • Krishna BS, Murty DS, Prakash BSJ. Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay. J Colloid Interf Sci. 2000;229:230-236. DOI: 10.1016/jcis.2000.7015.[Crossref]
  • Tarasevich YI, Krysenko DA, Polyakow VE. Equilibria and heats of ion exchange in the system of mordenite- alkali and alkaline earth cations. Theor Experim Chem. 2006;5(42):320-326. DOI: 10.1007/s11237-006-0060-1.[Crossref]
  • Pehlivan E, Altun T. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+ and Pb 2+ from aqueous solution on Dowex 50W synthetic resin. J Hazard Mat. B. 2006;134:149-156. DOI: 10.1016/j.jhazmat.2005.10.052.[Crossref]
  • Abo-Fara SA, Abdel-Aal AY, Ashour IA, Garamon SE. Removal of some heavy metal cations by synthetic resin purolite C100. J Hazard Mat. 2009;169:190-194. DOI: 10.1016/j.jhazmat.2009.03.86.[Crossref]
  • Tomczak E, Kaminski W. Drying kinetics simulation by means of artificial neural networks. In: Levy A, Kalman H, editors. Handbook of Powder Technology. Conveying and Handling of Particulate Solids. Amsterdam: Elsevier; 2001;10:569-580. DOI: 10.1016/S0163-3785(01)80059-2.[Crossref]
  • Haykin S. Neural Networks. A Comprehensive Foundation. New York: Macmillan College Publishing Company; 1994.
  • Bulsari AB. Neural Networks for Chemical Engineers. Computer-Aided Chemical Engineering, 6, Bulsari AB. editor. Amsterdam: Elsevier; 1995.
  • Rutkowski L. Metody i techniki sztucznej inteligencji. Inteligencja obliczeniowa. Warszawa: Wyd. Nauk. PWN; 2005 (in Polish).
  • Tomczak E. Application of ANN and EA for description of metal ions on chitosan foamed structure - Equilibrium and dynamics of packed column. Comp Chem Eng. 2011;35:226-235. DOI: 10.1016/j.compchemeng.2010.05.012.[Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_v10216-011-0017-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.