Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 13 | 3 | 198-203
Tytuł artykułu

The comparative gait effects of select walking surfaces using kinetic and EMG analyses

Treść / Zawartość
Warianty tytułu
Języki publikacji
Purpose. This study investigated the EMG characteristics of muscles crossing the knee and the kinetics of the lower extremity during side-slope walking and other activities of daily living. We studied the difference in EMG data of the medial gastrocnemius and vastus lateralis muscles bilaterally and the relative rotation of the thigh to leg. Methods. Eleven outdoor workers (47.3 ± 13.9 years old) were recruited for this study. Participants walked on a 0° flat surface, 5° and 10° side-sloped surfaces, 10° inclined treadmill and ascended stairs. The EMG activity and rotation about a vertical axis during stance phase were analyzed. Results. Except for minor variations, ANOVA showed no significant difference in EMG activity between the walking surfaces, furthermore, the relative rotation of thigh-to-leg showed little or no differences between the variables. Multivariate ANOVA showed p-values between 0.1602 and 0.9943 when comparing the EMG data of all side-sloped surfaces. The relative rotation of the thigh to the leg showed p-values of 0.7837 and 0.9813 when comparing the left 0° to 10° and right 0° to 10°, respectively. Conclusions. The results of this study indirectly indicate that when considering rotation about a vertical axis and EMG activity, there is little difference in knee joint loading.
Słowa kluczowe

Opis fizyczny
  • Department of Biology University of Dallas 1845 East Northgate Dr. Irving, TX 75062, USA,
  • Department of Biology, University of Dallas, Dallas, USA
  • Department of Biology, University of Dallas, Dallas, USA
  • Department of Biology, University of Dallas, Dallas, USA
  • Department of Biology, University of Dallas, Dallas, USA
  • 1. Perry J., Gait Analysis: Normal and Pathological Function. Slack Incorporated. Professional Book Division. Thorofare, NJ, USA, 1992.
  • 2. Samuel D., Rowe P., Hood V. Nicol A., The biomechanical functional demand placed on knee and hip muscles of older adults during stair ascent and descent. Gait Posture, 2011, 34 (2), 239-244, doi: 10.1016/j.gaitpost.2011.05.005.[WoS][Crossref]
  • 3. Brechter J.H., Powers C.M., Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain. Gait Posture, 2002, 16 (2), 115-123, doi: 10.1016/S0966-6362(02)00090-5.[PubMed][Crossref]
  • 4. Lay A.N., Hass C.J., Nichols R., Gregor R.J., The effects of sloped surfaces on locomotion: an electromyographic analysis. J Biomech, 2007, 40 (6), 1276-1285, doi: 10.1016/ j.jbiomech.2006.05.023.[PubMed][Crossref][WoS]
  • 5. McIntosh A.S., Beatty K.T., Dwan L.N., Vickers D.R., Gait dynamics on an inclined walkway. J Biomech, 2006, 39 (13), 2491-2502, doi: 10.1016/j.jbiomech.2005.07.025.[Crossref]
  • 6. Kim H.J., Fernandez J.W., Akbarshahi M., Walter J.P., Fregly B.J., Pandy M.G., Evaluation of predicted kneejoint muscle forces during gait using an instrumented knee implant. J Orthop Res, 2009, 27 (10), 1326-1331, doi: 10.1002/jor.20876.[Crossref][WoS]
  • 7. Gray H., Goss C., Gray’s Anatomy. 29th ed. Lea & Febiger, Philadelphia 1975.
  • 8. Sasaki K., Neptune R., Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech, 2010, 43 (14), 2780-2784, doi: 10. 1016/j. jbiomech.2010.06.011.[Crossref][WoS][PubMed]
  • 9. Besier T., Fredericson M., Gold G., Beaupré G., Delp S., Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J Biomech, 2009, 42 (7), 898-905, doi: 10.1016/j.jbiomech. 2009.01.032.[PubMed][WoS][Crossref]
  • 10. Zheng H., Black N.D., Harris N.D., Position-sensing technologies for movement analysis in stroke rehabilitation. Med Biol Eng Comput, 2005, 43 (4), 413-420, doi: 10.1007/ BF02344720.[Crossref]
  • 11. Bussmann H.B.J., Reuvekamp P.J., Veltink P.H., Martens W.L.J., Stam H.J., Validity and reliability of measurements obtained with an “activity monitor” in people with and without a transtibial amputation. Phys Ther, 1998, 78 (9), 989-998.
  • 12. Heyn A., Mayagoitia R.E., Nene A.V., Veltink P.H., The kinematics of the swing phase obtained from accelerometer and gyroscope measurements. In: Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Bridging Disciplines for Biomedicine. 31 Oct-3 Nov 1996, Amsterdam, Netherlands. IEEE, 1996, 2, 463-464.
  • 13. Bachmann E.R., McGhee R.B., Yun X., Zyda M.J., Inertial and magnetic posture tracking for inserting humans into networked virtual environments. In: Proceedings of the ACM symposium on virtual reality software and technology, November 2001, Baniff, Alberta, Canada, 9-16.
  • 14. Holmberg S., Thelin A., Thelin N., Is there an increased risk of knee osteoarthritis among farmers? A populationbased case-control study. Int Arch Occup Environ Health, 2004, 77 (5), 345-350, doi: 10.1007/s00420-004-0518-1.[Crossref]
  • 15. Vingard E., Osteoarthrosis of the knee and physical load from occupation. Annal Rheumatic Diseases, 1996, 55 (9), 677-684. doi:10.1136/ard.55.9.677.[Crossref]
  • 16. Murley G., Menz H., Landorf K., Foot posture influences then electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res, 2009, 2 (35), doi: 10.1186/1757-1146-2-35.[WoS][Crossref][PubMed]
  • 17. Nichols P., Bailey N., The accuracy of measuring leglength differences. Br Med J, 1955, 2 (4950), 1247-1248, doi: 10.1136/bmj.2.4950.1247.[Crossref]
  • 18. Williams D.S., McClay I.S., Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther, 2000, 80 (9), 864-871.
  • 19. Ciccotti M., Kerlan R., Perry J., Pink M., An electromyographic analysis of the knee during functional activities. I. The normal profile. Am J Sports Med, 1994, 22 (5), 645-650, doi: 10.1177/036354659402200512.[WoS][PubMed][Crossref]
  • 20. Costigan P., Deluzio K., Wyss U., Knee and hip kinetics during normal stair climbing. Gait Posture, 2002, 16 (1), 31-37, doi: 10.1016/S0966-6362(01)00201-6.[Crossref][PubMed]
  • 21. Wheeless C., Wheeless’ Textbook of Orthopaedics. Available from: URL: [accessed September 01, 2011].
  • 22. Ounpuu S., Winter D.A., Bilateral electromyographical analysis of the lower limbs during walking in normal adults. Electroenceph Clin Neurophysiol, 1989, 72 (5), 429-438, doi: 10.1016/0013-4694(89)90048-5.[Crossref]
  • 23. Jeleń P., Wit A., Dudziński K., Nolan L., Expressing gaitline symmetry in able-bodied gait. Dyn Med, 2008, 7, 17, doi: 10.1186/1476-5918-7-17.[Crossref]
  • 24. Benoit D.L., Ramsey D.K., Lamontagne M., Xu L., Wretenberg P., Renström P., Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture, 2006, 24 (2), 152-164, doi: 10.1016/j.gaitpost.2005.04.012.[Crossref][PubMed]
  • 25. Pullman S.L., Goodin D.S., Marquinez A.I., Tabbal S., Rubin M., Clinical utility of surface EMG: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2000, 55 (2), 171-177, doi: 10.1212/WNL.55.2.171. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.