Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 9 | 2 | 93-102
Tytuł artykułu

Inverse Dynamics and Artificial Neural Network Applications in Gait Analysis of the Disabled Subjects

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of this study is to review the achievements of the mathematical modeling of muscles force contribution during walking. In order to determine the contributions of individual muscles to the net force or net muscle torque at a given joint, the external forces acting on lower extremity joints during gait ought to be identified. The solution of this problem, called in biomechanics the inverse dynamics, is now regarded as a classical method of movement modelling. In the hypothesis put forward in this paper, it is considered if the artificial neural network method could be applied to the muscle contraction prediction during gait analysis in normal and disabled subjects. Artificial neural network (ANN) is an artificial intelligence method used in mathematical modelling and its applications in diverse areas, especially in biology and medicine, are steadily progressing. The achievements and possibilities of ANN in biomechanics were presented previously by others authors. For example, Liu and Lockhart [13] attempted at creating a network capable of reproducing muscle forces during gait from EMG signals recorded in working muscles. The objective of our study was to make use of the experience gained in the construction of ANN and to apply advanced mathematical procedures to identical experimental conditions of gaint analysis.

Opis fizyczny
  • External Faculty of Physical Education in Biała Podlaska, Józef Piłsudski University of Physical Education, Warsaw, Poland
  • Winter, D. A., Human balance and posture control during standing and walking. Gait Posture, 1995, 3(4), 193-214. DOI: 10.1016/0966-6362(96)82849-9.[Crossref]
  • Nigg, B. M., Herzog, W. (eds.), Biomechanics of the musculoskeletal system. John Willey & Sons, Chichester 1995.
  • Paul, J. P., Bioengineering studies of the forces transmitted by joint. Pergamon Press, Oxford 1965.
  • Seireg, A., Arvikar, R. J., A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech, 1973, 6(3), 313-326. DOI: 10.1016/0021-9290(73)90053-5.[Crossref][PubMed]
  • Crowninshield, R. D., Johnston, R. C., Andrews, J. G., Brand, R. A., A biomechanical investigation of the human hip. J Biomech, 1978, 11(1-2), 75-85. DOI: 10.1016/0021-9290(78)90045-3.[Crossref][PubMed]
  • Frigo, C., Pedotti, A., A model of the mechanism controlling neuromuscular activation during ambulation based on feedback control hypothhesis. TIT J Life Sci, 1978, 8(1-2), 29-35.[PubMed]
  • Hatze, H., A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J Biomech, 1981, 14(3), 135-142. DOI: 10.1016/0021-9290(81)90019-1.[Crossref]
  • Yeadon, M. R., The simulation of aerial movement-I. The determination of orientation angles from film data. J Biomech, 1990, 23(1), 59-66. DOI: 10.1016/0021-9290(90)90369-E.[Crossref][PubMed]
  • McNeill Alexander, R., Simple models of walking and jumping. Hum Mov Sci, 1992, 11(1-2), 3-9. DOI: 10.1016/0167-9457(92)90045-D.[Crossref]
  • Vukobratović M., Potkonjak, V., Babković K., Borovac, B., Simulation model of general human and humanoid motion. Multibody System Dynamics, 2007, 17(1), 71-96. DOI: 10.1007/s11044-006-9034-2.[Crossref]
  • Gruber, K., Ruder, H., Denoth, J., Schneider, K., A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech, 1998, 31(5), 439-444. DOI: 10.1016/S0021-9290(98)00033-5.[PubMed][Crossref]
  • Forner-Cordero, A., Koopman, H. J. F. M., van der Helm, F. C. T., Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait Posture, 2006 23(2), 189-199. DOI: 10.1016/j.gaitpost.2005.02.002.[Crossref]
  • Liu, J., Lockhart, T. E., Comparison of 3D joint moments using local and global inverse dynamics approaches among three different age groups. Gait Posture, 2006, 23(4), 480-485. DOI: 10.1016/j.gaitpost.2005.06.011.[Crossref][PubMed]
  • Rao, G., Amarantini, D., Berton, E., Favier, D., Influence of body segments' parameters estimation models on inverse dynamics solutions during gait. J Biomech, 2006, 39(8), 1531-1536. DOI: 10.1016/j.jbiomech.2005.04.014.[Crossref]
  • Tsirakos, D., Baltzopoulos, V., Bartlett, R., Inverse optimization: functional and physiological considerations related to the forcesharing problem. Crit Rev Biomed Eng, 1997, 25(4-5), 371-407.[PubMed][Crossref]
  • Ackermann, M., Schiehlen, W., Physiological methods to solve the force-sharing problem in biomechanics. Proceedings of the Multibody Dynamics ECCOMAS Thematic Conference. 25-28 June, 2007, Milano, Italy.
  • Czaplicki, A., Are natural coordinates a useful tool in modeling planar biomechanical linkages? J Biomech, 2007, 40(10), 2307-2312. DOI: 10.1016/j.jbiomech.2006.10.029.[Crossref][PubMed]
  • Glitsch, U., Baumann, W., The three-dimensional determination of internal loads in the lower extremity. J Biomech, 1997, 30(11-12), 1123-1131. DOI: 10.1016/S0021-9290(97)00089-4.[Crossref][PubMed]
  • Czaplicki, A., Silva, M., Ambrósio, J., Jesus, O., Abrantes, J., Estimation of the muscle force distribution in ballistic motion based on a multibody methodology. Comput Methods Biomech Biomed Engin, 2006, 9(1), 45-54. DOI: 10.1080/10255840600603625.[Crossref][PubMed]
  • Anderson, F. C., Pandy, M. G., Static and dynamic optimization solutions for gait are practically equivalent. J Biomech, 2001, 34(2), 153-161. DOI: 10.1016/S0021-9290(00)00155-X.[Crossref][PubMed]
  • Lloyd, D. G., Besier, T. F., An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech, 2003, 36(6), 765-776. DOI: 10.1016/S0021-9290(03)00010-1.[Crossref][PubMed]
  • Neptune, R. R., Zajac, F. E., Kautz, S. A., Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant. J Biomech, 2004, 37(6), 817-825. DOI: 10.1016/j.jbiomech.2003.11.001.[Crossref]
  • Pandy, M. G., Zajac, F. E., Optimal muscular coordination strategies for jumping. J Biomech, 1991, 24(1), 1-10. DOI: 10.1016/0021-9290(91)90321-D.[PubMed][Crossref]
  • Anderson, F. C., Pandy, M. G., A dynamic optimization solution for vertical jumping in three dimensions. Comput Methods Biomech Biomed Engin, 1999, 2(3), 201-231. DOI: 10.1080/10255849908907988.[Crossref][PubMed]
  • Anderson, F. C., Pandy, M. G., Individual muscle contributions to support in normal walking. Gait Posture, 2003, 17(2), 159-169. DOI: 10.1016/S0966-6362(02)00073-5.[Crossref][PubMed]
  • Pandy, M. G., Zajac, F. E., Sim, E., Levine, W. S., An optimal control model for maximum-height human jumping. J Biomech, 1990, 23(12), 1185-1198. DOI: 10.1016/0021-9290(90)90376-E.[Crossref][PubMed]
  • Pandy, M. G., Computer modeling and simulation of human movement. Ann Rev Biomed Eng, 2001, 3, 245-273. DOI: 10.1146/annurev.bioeng.3.1.245.[Crossref]
  • Pandy, M. G., Anderson, F. C., Hull, D. G., A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. J Biomech Eng, 1992, 114(4), 450-460. DOI: 10.1115/1.2894094.[Crossref][PubMed]
  • Menegaldo, L. L., Fleury, A. de, T., Weber, H. I., Biomechanical modeling and optimal control of human posture. J Biomech, 2003, 36(11), 1701-1712. DOI: 10.1016/S0021-9290(03)00170-2.[PubMed][Crossref]
  • Menegaldo, L. L., Fleury, A. de, T., Weber, H. I., A ‘cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J Biomech, 2006, 39(10), 1787-1795. DOI: 10.1016/j.jbiomech.2005.05.029.[PubMed][Crossref]
  • Czaplicki, A., Optimization solutions depend on the choice of coordinate system. Acta Bioeng Biomech, 2008, 10(2), 75-79.[PubMed]
  • Bennett, D., Ogonda, L. Elliott, D., Humphreys, L., Beverland, D. E., Comparison of gait kinematics in patients receiving minimally invasive and traditional hip replacement surgery: A prospective blinded study. Gait Posture, 2006, 23(3), 374-382. DOI: 10.1016/j.gaitpost.2005.04.008.[PubMed][Crossref]
  • Pierrynowski, M. R., Tiidus, P. M., Galea, V., Women with fibromyalgia walk with an altered muscle synergy. Gait Posture, 2005, 22(3), 210-218. DOI: 10.1016/j.gaitpost.2004.09.007.[PubMed][Crossref]
  • Arnold, A. S., Liu, M. Q., Schwartz, M. H., Öunpuu, S., Delp, S. L., The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture, 2006, 23(3), 273-281. DOI: 10.1016/j.gaitpost.2005.03.003.[Crossref][PubMed]
  • Goldberg, S. R., Őunpuu, S., Arnold, A. S., Gage, J. R., Delp, S. L., Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait. J Biomech, 2006, 39(4), 689-698. DOI: 10.1016/j.jbiomech.2005.01.015.[PubMed][Crossref]
  • Wu, W.-L., Su, F.-C., Cheng, Y.-M., Huang, P.-J., Chou, Y.-L., Chou, C.-K., Gait analysis after ankle arthrodesis. Gait Posture, 2000, 11(1), 54-61. DOI: 10.1016/S0966-6362(99)00049-1.[PubMed][Crossref]
  • Morris, M. E., Huxham, F., McGinley, J., Dodd, K., Iansek, R., The biomechanics and motor control of gait in Parkinson disease. Clin Biomech, 2001, 16(6), 459-470. DOI: 10.1016/S0268-0033(01)00035-3.[Crossref]
  • Zhang, S., Clowers, K. G., Powell, D., Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers. Gait Posture, 2006, 24(4), 487-492. DOI: 10.1016/j.gaitpost.2005.12.003.[PubMed][Crossref]
  • Nolan, L., Wit, A., Dudziński, K., Lees, A., Lake, M., Wychowański, M., Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture, 2003, 17(2), 142-151. DOI: 10.1016/S0966-6362(02)00066-8.[Crossref][PubMed]
  • Simon, S. R., Quantification of human motion: gait analysis - benefits and limitations to its application to clinical problems. J Biomech, 2004, 37(12), 1869-1880. DOI: 10.1016/j.jbiomech.2004.02.047.[PubMed][Crossref]
  • Chau, T., A review of analytical techniques for gait data. Part 2: neural network and wavelet methods. Gait Posture, 2001, 13(2), 102-120. DOI: 10.1016/S0966-6362(00)00095-3.[PubMed][Crossref]
  • Barton, G., Lees, A., Lisboa, P., Attfield, S., Visualisation of gait data with Kohonen self-organising neural maps. Gait Posture, 2006, 24(1), 46-53. DOI: 10.1016/j.gaitpost.2005.07.005.[PubMed][Crossref]
  • Barton, G., Lisboa, P., Lees, A., Attfield, S., Gait quality assessment using self-organising artificial neural networks. Gait Posture, 2007, 25(3), 374-379. DOI: 10.1016/j.gaitpost.2006.05.003.[Crossref][PubMed]
  • Lees, A., Technique analysis in sports: a critical review. J Sports Sci, 2002, 20(10), 813-828.[Crossref][PubMed]
  • Graupe, D., Kordylewski, H., Artificial neural network control of FES in paraplegics for patient responsive ambulation. IEEE Trans Biomed Eng, 1995, 42(7), 699-707. DOI: 10.1109/10.391169.[PubMed][Crossref]
  • Popovic, D., Baker, L. L., Loeb, G. E., Recruitment and comfort of BION implanted electrical stimulation: implications for FES applications. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(4), 577-586. DOI: 10.1109/TNSRE.2007.909816.[PubMed][Crossref]
  • Gioftsos, G., Grieve, D. W., The use of neural networks to recognize patterns of human movement: gait patterns. Clin Biomech, 1995, 10(4), 179-183. DOI: 10.1016/0268-0033(95)91395-U.[Crossref]
  • Barton, J. G., Lees, A., Development of a connectionist expert system to identify foot problems based on under-foot pressure patterns. Clin Biomech, 1995, 10(7), 385-391. DOI: 10.1016/0268-0033(95)00015-D.[Crossref]
  • Savelberg, H. H. C. M., de Lange, A. L. H., Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks. Clin Biomech, 1999, 14(8), 585-592. DOI: 10.1016/S0268-0033(99)00036-4.[Crossref]
  • Sepulveda, F., Wells, D. M., Vaughan, C. L., A neural network representation of electromyography and joint dynamics in human gait. J Biomech, 1993, 26(2), 101-109. DOI: 10.1016/0021-9290(93)90041-C.[PubMed][Crossref]
  • Tucker, C. A., White, S. C., Neurocomputational approaches to pattern recogantion and time-series analysis of electromyogaphic data obtained during walking. International Society of Biomechanics XVIIth Congress. 1999, Calgary, Canada, 214.
  • Heller, B. W., Veltink, P. H., Rijkhoff, N. J. M., Rutten, W. L. C., Andrews, B. J., Reconstructing muscle activation during normal walking: a comparison of symbolic and connectionist machine learning techniques. Biol Cybern, 1993, 69(4), 327-335. DOI: 10.1007/BF00203129.[PubMed][Crossref]
  • Prentice, S. D., Patla, A. E., Stacey, D. A., Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds. Exp Brain Res, 1998, 123(4), 474-480. DOI: 10.1007/s002210050591.[Crossref][PubMed]
  • Savelberg, H. H. C. M., Herzog, W., Prediction of dynamic tendon forces from electromyographic signals: An artificial neural network approach. J Neurosci Methods, 1997, 78(1-2), 65-74. DOI: 10.1016/S0165-0270(97)00142-8.[Crossref][PubMed]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.