Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 4 | 95-99
Tytuł artykułu

Adsorption of humic acid on mesoporous carbons prepared from poly- (ethylene terephthalate) templated with magnesium compounds

Treść / Zawartość
Warianty tytułu
Języki publikacji
Porous carbons obtained from poly(ethylene terephtalate) contained in a mixture with either MgCO3 or Mg(OH)2 were examined as adsorbents for removal of humic acid from water. Adsorption of the model contaminants is discussed in relation to the textural parameters of the obtained carbon materials. Pore structure parameters of the carbonaceous materials were strongly influenced by preparation conditions including temperature and relative amounts of the inorganics used during preparations as template. Porous carbons prepared revealed a potential to purify water from the model contaminant of high molecular weight. The results presented confirmed a key role of mesoporosity in the adsorption of humic acid. Fluorescence spectroscopy was confirmed to be an useful method to evaluate concentration of humic acid in water.

Opis fizyczny
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environmental Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland,
  • 1. Zhan, Y., Lin, J., Qiu, Y., Gao, N. & Zhu, Z. (2011). Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified zeolite. Front.Environ. Sci. Engin. Chin. 5, 65-75. DOI: 10.1007/s11783-010- 0277-z.[Crossref]
  • 2. Lesley, J., Flora, J.R.V., Park, Y., Badawy, M., Hazem, S. & Yoon, Y. (2012). Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Sep. Purif. Technol. 95, 64-72. DOI: 10.1016/j.seppur.2012.04.033.[Crossref]
  • 3. Huang, W.J. & Yeh, H.H. (1999). Reaction of chlorine with NOM adsorbed on powdered activated carbon. Water Res. 33, 65-72. DOI: 10.1016/S0043-1354(98)00184-5.[Crossref]
  • 4. Imyim, A. & Prapalimrungsi, E. (2010). Humic acids removal from water by aminopropyl functionalized rice husk ash. J.Hazard. Mater. 184,775-781. DOI: 10.1016/j.jhazmat.2010.08.108.[Crossref]
  • 5. Carlson, G. & Silvestrain, J. (1997). Effect of ozonation on sorption of natural organic matter by biofilm. Water Res. 31, 2467-2478. DOI: 10.1016/S0043-1354(97)00106-1.[Crossref]
  • 6. Anirudhan, T.S., Suchithra, P. S. & Rijith, S. (2008). Amine-modified polyacrylamide-bentonite composite for the adsorption of humicacid in aqueous solutions. Colloids andSurf. A: Physicochem. Eng. Asp. 326, 147-156. DOI: 10.1016/j. colsurfa.2008.05.022.[Crossref]
  • 7. Lorenc-Grabowska, E., Gryglewicz, G. (2005). Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. J. Colloid Interface Sci. 284, 416-423. DOI: 10.1016/j.jcis.2004.10.031.[Crossref]
  • 8. Lorenc-Grabowska, E. & Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigment. 74, 34-40. DOI: 10.1016/j. dyepig.2006.01.027.[Crossref]
  • 9. Maghsoodloo, Sh., Noroozi, B., Haghi, A.K. & Sorial, G.A. (2011). Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon. J. Hazard. Mater. 191, 380-387. DOI: 10.1016/j.jhazmat.2011.04.096.[Crossref]
  • 10. Mohanty, K., Das, D. & Biswas, M.N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115, 121-131. DOI: 10.1016/j.cej.2005.09.016.[Crossref]
  • 11. Kilic, M., Apaydin-Varol, E. & Pütün, A.E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189, 397-403. DOI: 10.1016/j.jhazmat.2011.02.051.[Crossref]
  • 12. Newcombe, G., Drikas, M. & Hayes, R. (1997). Influence of characterized natural organic material on activatedcarbon adsorption: II. Effect on pore volume distribution and adsorption of 2- methylisoborneol. Water Res. 31, 1065-1073. DOI: 10.1016/S0043-1354(96)00325-9.[Crossref]
  • 13. Lin, J. & Zhan, Y. (2012). Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chem. Eng. J. 200-202, 202-213. DOI: 10.1016/j.cej.2012.06.039.[Crossref]
  • 14. Doulia, D., Leodopoulos, Ch., Gimouhopoulos, K. & Rigas, F. (2009). Adsorption of humic acid on acid-activated Greek bentonite. J.Colloid Interface Sci. 340, 131-141. DOI: 10.1016/j.jcis.2009.07.028.[Crossref]
  • 15. Wu, F.Ch., Tseng, R.L. & Juang, R.S. (2002). Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon. J. Chem. Technol. Biotechnol. 77, 1269-1279. DOI: 10.1002/jctb.705.[Crossref]
  • 16. Maghsoodloo, S., Noroozi, B., Haghi, A.K. & Sorial, G.A. (2011). Consequence of chitosan treating on the adsorption of humic acid by granular activated carbon. J. Hazard. Mater. 191, 380-387. DOI: 10.1016/j.jhazmat.2011.04.096.[Crossref]
  • 17. Moura, M.N., Martín, M.J. & Burguillo, F.J. (2007). A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge. J.Hazard. Mater. 149, 42-48. DOI:10.1016/j.jhazmat.2007.02.074.[Crossref]
  • 18. Lai, C.H. & Chen, C.Y. (2001). Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44, 1177-1184. DOI: 10.1016/S0045-6535(00)00307-6.[Crossref]
  • 19. Chen, J.P. & Wu, S. (2004). Simultaneous adsorption of copper ions and humic acid onto an activated carbon. J. ColloidInterface Sci. 280, 334-342. DOI: 10.1016/j.jcis.2004.08.029.[Crossref]
  • 20. Velten, S., Knappe, D.R.U., Traber, J., Kaiser, H. P., Gunten, U., Boller M. & Meylan, S. (2011). Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Res. 45, 3951-3959. DOI: 10.1016/j. watres.2011.04.047.[Crossref]
  • 21. Daifullah, A.A.M., Girgis, B.S. & Gad, H.M.H. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf.A 235, 1-10. DOI: 10.1016/j.colsurfa.2003.12.020.[Crossref]
  • 22. Stárek, J., Zukal, A. & Rathouský, J. (1994). Comparison of the adsorption of humic acids from aqueous solutions on active carbon and activated charcoal cloths. Carbon 32, 207-211. DOI: 10.1016/0008-6223(94)90184-8.[Crossref]
  • 23. Morishita , T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A. W., Konno, H. & Inagaki, M. (2010). A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48, 2690 -2707. DOI: 10.1016/j. carbon.2010.03.064.[Crossref]
  • 24. Han, S., Kim, S., Lim, H., Choi, W., Park, H., Yoon, J. & Hyeon, T. (2003) New nanoporous carbon materials with highadsorption capacity and rapid adsorption kinetics for removing humic acids. Microporous Mesoporous Mater. 58, 131-135. DOI: 10.1016/S1387-1811(02)00611-X.[Crossref]
  • 25. Yue, Z., Mangun, C.L. & Economy, J. (2004). Characterization of surface chemistry and pore structure of H3PO4- -activated poly(vinyl alcohol) coated fiberglass. Carbon 42, 1973-1982. DOI: 10.1016/j.carbon.2004.03.030.[Crossref]
  • 26. Tamai, H., Yoshida, T., Sasaki, M. & Yasuda, H. (1999). Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon 37, 983-989. DOI: 10.1016/S0008-6223(98)00294-2.[Crossref]
  • 27. Davini, P. (2001). SO2 and NOx adsorption properties of activated carbons obtained from a pitch containing iron derivatives. Carbon 39, 2173-2179. DOI: 10.1016/S0008- 6223(01)00035-5.[Crossref]
  • 28. Nakagawa, K., Mukai, S.R., Suzuki, T. & Tamon, H. (2003). Gas adsorption on activated carbons from PET mixtures with a metal salt. Carbon 41 (2003) 823-831. DOI: 10.1016/ S0008-6223(02)00404-9.[Crossref]
  • 29. Przepiórski, J., Karolczyk, J., Takeda, K., Tsumura, T., Toyoda, M. & Morawski, A. W. (2009). Porous Carbon Obtained by Carbonization of PET mixed with basic magnesium carbonate: Pore Structure and Pore Creation Mechanism. Ind. Eng. Chem. Res. 48, 7110-7116. DOI: 10.1021/ie801694t.[Crossref]
  • 30. Karolczyk, J., Janus, M. & Przepiórski, J. (2012). Removal of model contaminants from water by porous carbons obtained through carbonization of poly(ethylene terephthalate) mixed with some magnesium compounds. J. Porous Mater. DOI: 10.1007/s10934-012-9585-y.[Crossref]
  • 31. Czyżewski, A., Karolczyk, J., Usarek, A. & Przepiórski, J. (2012). Removal of two ionic dyes from water by MgOloaded porous carbons prepared through one-step process from poly(ethylene terephthalate)/ magnesium carbonate mixtures. Bull. Mater. Sci. 35, 211-219.[Crossref]
  • 32. Przepiórski, J., Karolczyk, J., Tsumura, T., Toyoda, M., Inagaki, M.& Morawski, A.W. (2011). Effect of some thermally unstable magnesium compounds on the yield of char formed from poly(ethylene terephthalate). J. Therm. Anal. Calorim. 107 (3), 1147-1154. DOI 10.1007/s10973-011-1910-1.[Crossref]
  • 33. Yorgun, S., Vural, N. & Demiral, H. (2009). Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater. 122, 189-194. DOI: 10.1016/j.micromeso.2009.02.032.[Crossref]
  • 34. Hared, I.A., Dirion, J.L., Salvador, S., Lacroix, M., Rio, S. (2007). Pyrolysis of wood impregnated with phosphoric acid for the production of activated carbon: Kinetics and porosity development studies. J. Anal. Appl. Pyrolysis 79, 101-105. DOI: 10.1016/j.jaap.2006.12.016.[Crossref]
  • 35. Tham, Y.J., Latif, P.A., Abdullah, A.M., Shamala-Devi, A. & Taufiq-Yap, Y.H. (2011). Performances of toluene removal by activated carbon derived from durian shell. Bioresour. Technol. 102, 724-728. DOI: 10.1016/j.biortech.2010.08.068.[Crossref]
  • 36. Bansode, R.R., Losso, J.N., Marshall, W.E., Rao, R.M. & Portier, R.J. (2004). Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater. Bioresour. Technol. 94, 129-135. DOI: 10.1016/j.biortech.2003.12.009.[Crossref]
  • 37. Inagaki, M., Kato, M., Morishita, T., Morita, K. & Mizuuchi, K. (2007). Direct preparation of mesoporous carbon from a coal tar pitch. Carbon 45, 1121-1124. DOI: 10.1016/j. carbon.2007.01.014. DOI: 10.1016/j.jpowsour.2007.09.042.[Crossref]
  • 38. Fernández, J.A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, F. & Centeno, T.A. (2008). Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675-679. DOI: 10.1016/j. jpowsour.2007.09.042.[Crossref]
  • 39. Peuravuori, J., Koivikko, R. & Pihlaja, K. (2002). Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Res. 36, 4552-4562. DOI: 10.1016/S0043-1354(02)00172-0.[Crossref]
  • 40. Uyguner, C.S. & Bekbolet, M. (2005). Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy. Catal. Today 101, 267-274. DOI: 10.1016/j. cattod.2005.03.011.[Crossref]
  • 41. Pelekani, C., Snoeyink, V.L. (1999). Competitive adsorption in natural water: role of activated carbon pore size. WaterRes. 33, 1209-1219. DOI: 10.1016/S0043-1354(98)00329-7.[Crossref]
  • 42. Mui, E.L.K., Cheung, W.H., Valix, M. & McKay, G. (2010). Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. J. Colloid InterfaceSci. 347, 290-300. DOI: 10.1016/j.jcis.2010.03.061.[Crossref]
  • 43. Yuan, X., Zhuo, S.-P., Xing, W., Cui, H.-Y., Dai, X.-D., Lui, X.-M. & Yan, Z.-F. (2007). Aqueous dye adsorption on ordered mesoporous carbons. J. Colloid Interface Sci. 310, 83-89. DOI: 10.1016/j.jcis.2007.01.069.[Crossref]
  • 44. Tryba, B., Brożek, P., Piszcz, M. & Morawski, A.W. (2011). New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Pol. J. Chem.Technol., 13, 08-14. DOI: 10.2478/v10026-011-0042-5.[Crossref]
  • 45. Chen, J., LeBoeuf, E.J., Dai, S. & Gu, B. (2003). Fluoresence spectroscopic studied of natural organic matter fractions. Chemosphere 50, 639-647. DOI: 10.1016/S0045-6535(02)00616-1.[Crossref]
  • 46. Fasurová, N., Čechlovská, H. & Kučerík, J. (2006). A comparative study of South Moravian lignite and standard IHSS humic acids, optical and colloidal properties. Pet. Coal. 48, 24-32.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.