PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 4 | 69-76
Tytuł artykułu

Simultaneous synthesis-immobilization of nano ZnO on perlite for photocatalytic degradation of an azo dye in semi batch packed bed photoreactor

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel, simple and simultaneous synthesis-immobilization of nano ZnO on perlite (nZnO-P) as a photocatalyst for photocatalytic degradation of Acid orange 7 (AO7) in aqueous solution was investigated. The effect of operational parameters such as initial dye concentration, initial pH, flow rate, photocatalyst granule size, temperature and the kinetic of the removal of AO7 in terms of the Langmuir-Hinshelwood model in a designed semi batch packed bed photoreactor connected to an on-line sampling UV-Vis spectrophotometer was studied. The results showed that AO7 removal efficiency increased with nZnO-P using the designed setup and the proposed photocatalyst was more efficient than TiO2 as a standard catalyst. Our results confirmed the pseudo-first-order kinetics model. The values of the adsorption equilibrium constant, KAO7, the kinetic rate constant of surface reaction, kc, and the activation energy (Ea) were found to be 0.57 (mg.l−1)−1, 0.41 mg.l−1.min−1 and 11.44 kJ/mol, respectively.
Wydawca
Rocznik
Tom
14
Numer
4
Strony
69-76
Opis fizyczny
Daty
wydano
2012-12-01
online
2013-01-12
Twórcy
autor
  • Islamic Azad University, Faculty of Chemistry, North Tehran Branch, P.O. Box 66 1913674711, Tehran, Iran , a.khani59@yahoo.com
  • Islamic Azad University, Faculty of Chemistry, North Tehran Branch, P.O. Box 66 1913674711, Tehran, Iran
Bibliografia
  • 1. Chakrabarti, S. & Dutta, B.K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. B 112(3), 269-278. DOI: 10.1016/j.jhazmat.2004.05.013.[Crossref]
  • 2. Kandavelu, V., Katien, H. & Thampi, R. (2004). Photocatalytic degradation of isothiazolin-3-ons in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts. Appl. Catal. B: Environ., 48(2), 101-111. DOI: 10.1016/j. apcatb.2003.09.022.
  • 3. Khodja, A.A., Sehili, T., Pilichowski, J. & Boule, P. (2001). Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspension. J. Photochem. Photobiol. A: Chem., 141(2-3), 231-239. DOI: 10.1016/S1010-6030(01)00423-3.
  • 4. Daneshvar, N., Salari, D. & Khataee, A.R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A: Chem., 162(2-3), 317-322. DOI: 10.1016/S1010- 6030(03)00378-2.[Crossref]
  • 5. Zhang, D. (2010). Synthesis and characterization of ZnO- -doped cupric oxides and evaluation of their photocatalytic performance under visible light. Transit. Metal Chem. 35(6), 689-694. DOI: 10.1007/s11243-010-9380-z.[Crossref][WoS]
  • 6. Liu, B., Torimoto, T. & Yoneyama, H. (1998). Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. A: Chem., 113(1), 93-97. DOI: 10.1016/S1010-6030(97)00318-3.
  • 7. Konstantinou, I., Sakellarides T., Sakkas, V. & Albanis, T. (2001). Photocatalytic degradation of selected S-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ. Sci. Technol., 35(2), 398-405. DOI: 10.1021/es001271c.[Crossref]
  • 8. Kwon, Y.T., Song, K.Y., Lee, W.I., Choi, G.J. & Do, Y.R. (2000). Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J. Catal., 191(1), 192-199. DOI: 10.1006/ jcat.1999.2776.[Crossref]
  • 9. Lin, H., Liao, S. & Hung, S. (2005). The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photochem. Photobiol. A: Chem., 174(1), 82-87. DOI: 10.1016/j.jphotochem.2005.02.015.[Crossref]
  • 10. Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M. & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energy Mater. C, 77(1), 65-82. DOI: 10.1016/S0927-0248(02)00255-6.[Crossref]
  • 11. Huihu, W., Changsheng, X., Wei, Z., Shuizhou, C., Zhihong, Y. & Yanghai, G. (2004). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mater. B, 141(3), 645-652. DOI: 10.1016/j.jhazmat.2006.07.021.[WoS][Crossref]
  • 12. Daneshvar, N., Rasoulifard, M.H., Khataee, A.R. & Hosseinzadeh, F. (2007). Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J. Hazard. Mater., 143(1-2), 95-101. DOI: 10.1016/j.jhazmat.2006.08.072.[WoS][Crossref]
  • 13. Dindar, B. & Icli, S. (2001). Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J. Photochem. Photobiol. A, 140(3), 263-268. DOI: 10.1016/S1010- 6030(01)00414-2.[Crossref]
  • 14. Pirkanniemi, K. & Sillanpa, M. (2002). Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere, 48(10), 1047-1060. DOI: 10.1016/S0045- 6535(02)00168-6.[Crossref][PubMed]
  • 15. Lizama, C., Freer, J., Baeza, J. & Mansilla, H. (2002). Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspension. Catal. Today, 76(2-4), 235-246. DOI: 10.1016/ S0920-5861(02)00222-5.[Crossref]
  • 16. Yeber, M.C., Rodriguez J., Freer J., Baeza, J., Duran, N. & Mansilla, H. (1999). Advanced oxidation of pulp mill bleaching wastewater. Chemosphere, 39(10), 1679-1688. DOI: 10.1016/S0045-6535(99)00068-5.[Crossref][PubMed]
  • 17. Behnajady, M.A., Modirshahla, N. & Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B, 133(1-3), 226-232. DOI: 10.1016/j.jhazmat.2005.10.022.[Crossref]
  • 18. Ray, A. K. & Beenackers, A.A.C.M. (1997). Development of a new photocatalytic reactor for water purification. Catalysis Today, 40(1), 73-83. DOI: 10.1016/S0920-5861(97)00123-5.[Crossref]
  • 19. Ray, A.K. & Beenackers, A.A.C.M. (1997). Novel swirl- -flow reactor for kinetic studies of semiconductor photocatalysis. A.I.Ch.E. Journal, 43(10), 2571-2578. DOI: 10.1002/ aic.690431018.[Crossref]
  • 20. Chen, D. & Ray, A.K. (2001). Removal of toxic metal ions from wastewater by semiconductor Photocatalysis. Chem. Eng. Science, 56(4), 1561-1570. DOI: 10.1016/S0009- 2509(00)00383-3.[Crossref]
  • 21. Ray, A.K. & Beenackers, A.A.C.M. (1998). Novel photocatalytic reactor for water purification. A.I.Ch.E. Journal, 44(2), 477-483. DOI: 10.1002/aic.690440224.[Crossref]
  • 22. Machado, N.R.C.F. & Santana, V.S. (2005). Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25. Catal. Today, 107-108, 595-601. DOI: 10.1016/j. cattod.2005.07.022.[Crossref]
  • 23. Gong, W.J., Tao, H.W, Zi, G.L., Tang, X.Y., Yan, Y.L., Li, B. & Wang, J.Q. (2009). Visible light photodegradation of dyes over mesoporous titania prepared by using chrome azurol S as template, Res. Chem. Intermed., 35(6), 751-760. DOI: 10.1007/s11164-009-0105-x.[WoS][Crossref]
  • 24. Cheng, Y., Sun, H., Jin, W. & Xu, N. (2007). Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method. Chinese J. of Chem. Eng., 15(2), 178-183. DOI: 10.1016/S1004- -9541(07)60055-X.[Crossref]
  • 25. Medina-Valtierr, J., Moctezuma, E., Sanchez-Cardenas, M. & Frausto-Reyes, C. (2005). Global photonic efficiency for phenol degradation and mineralization in heterogeneous photocatalysis. J. Photochem. Photobiol. A, 174(3), 246-252. DOI: 10.1016/j.jphotochem.2005.03.020.[Crossref]
  • 26. Karches, M., Morstein, M., Rohr, P.R.V., Pozzo, R.L., Giombi, J.L. & Baltanas, M.A. (2002). Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal. Today, 72 (3-4), 267-279. DOI: 10.1016/S0920-5861(01)00505-3.[Crossref]
  • 27. Lee, J-Ch., Kim, M-S. & Kim, B.W. (2002). Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps, Wat. Res., 36(7), 1776-1782. DOI: 10.1016/S0043-1354(01)00378-5.[Crossref]
  • 28. Horikoshi, S, Watanabe, N., Onishi, H., Hidaka, H. & Serpone, N. (2002). Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. Appl. Catal. B, 37(2), 117-129. DOI: 10.1016/S0926-3373(01)00330-7.[Crossref]
  • 29. Martyanov, I.N. & Klabunde, K.J. (2004). Comparative study of TiO2 particles in powder form and as a thin nanostructured film on quartz. J. Catal., 225(2), 408-416. DOI: 10.1016/j.jcat.2004.04.019.[Crossref]
  • 30. Shang, J., Li, W. & Zhu, Y. (2003). Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet. J. Mol. Catal. A, 202(1-2), 187-183. DOI: 10.1016/S1381-1169(03)00200-0.[Crossref]
  • 31. Ao, C.H., Lee, S.C. & Yu, J.C. (2003). Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J. Photochem. Photobiol. A, 156(1-3), 171-177. DOI: 10.1016/ S1010-6030(03)00009-1.[Crossref]
  • 32. Vohra, M.S. & Tanaka, K. (2003). Photocatalytic degradation of aqueous pollutants using silica-modified TiO2. Wat. Res., 37(16), 3992-3996. DOI: 10.1016/S0043-1354(03)00333-6.[Crossref][PubMed]
  • 33. Hosseini, S.N., Borghei, S.M., Vossoughi, M. & Taghavinia N. (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl. Catal. B: Environmental, 74(1-2), 53-62. DOI: 10.1016/j.apcatb.2006.12.015.[Crossref]
  • 34. Daneshvar, N., Aber, S., Khani, A. & Khataee, A.R., (2007). Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system. J. Hazard. Mater., 144(1-2), 47-51. DOI: 10.1016/j.jhazmat.2006.09.081.[Crossref]
  • 35. Erdem, T.K., Meral, C., Tokyay, M. & Erdogan, T.Y. (2007). Use of perlite as a pozzolanic addition in producing blended cements. Cem. Concr. Compos., 29(1), 13-21. DOI: 10.1016/j.cemconcomp.2006.07.018.[WoS][Crossref]
  • 36. Zhang, D. (2012). Structural, optical, electrical, and photocatalytic properties of manganese doped zinc oxide nanocrystals. Russ. J. Phys. Chem. A. 86(1), 93-99. DOI: 10.1134/ S0036024412010086.[Crossref]
  • 37. Kesraoui-Abdessalem, A., Oturan, N., Bellakhal, N., Dachraoui, M. & Oturan, M.A. (2008). Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl. Catal. B, 78(3-4), 334-341. DOI: 10.1016/j.apcatb.2007.09.032.[WoS][Crossref]
  • 38. Bahnemann, W., Muneer, M. & Haque, M.M. (2007). Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions, Catal. Today, 124(3-4), 133-148. DOI: 10.1016/j.cattod.2007.03.031.[WoS][Crossref]
  • 39. Khataee, A.R., Zarei, M., Fathinia, M. & Khobnasab Jafari, M. (2011). Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: Destruction pathway and response surface approach. Desalination, 268(1-3), 126-133. DOI: 10.1016/j.desal.2010.10.008.[WoS]
  • 40. Selvam, K., Muruganandham, M., Muthuvel, I. & Swaminathan, M. (2007). The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chem. Eng. J., 128(1), 51. DOI: 10.1016/j. cej.2006.07.016.[WoS][Crossref]
  • 41. Damodar, R.A. & Swaminathan, J.T. (2007). Decolourization of reactive dyes by thin film immobilized surface photoreactor using solar irradiation. Sol. Energy, 81(1), 1-7. DOI: 10.1016/j.solener.2006.07.001.[Crossref][WoS]
  • 42. Ghassabzadeh, H., Torab-Mostaedi, M., Mohaddespour, A., Ghannadi Maragheh, M., Ahmadi, S.J. & Zaheri, P. (2010). Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite. Desalination, 261(1- 2), 73-79. DOI: 10.1016/j.desal.2010.05.028.[WoS][Crossref]
  • 43. Dijkstra, M.F.J., Panneman, H.J., Winkelman, J.G.M., Kelly, J.J. & Beenackers, A.A.C.M. (2002). Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst. Chem. Eng. Sci., 57(22-23), 4895-4907. DOI: 10.1016/S0009-2509(02)00290-7.[Crossref]
  • 44. Behnajady, M.A., Modirshahla, N., Shokri, M. & Vahid, B. (2008). Effect of operational parameters on degradation of Malachite Green by ultrasonic irradiation. Ultrasonics Sonochemistry, 15(6), 10091014. DOI: 10.1016/j.ultsonch.2008.03.004.[WoS][Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_v10026-012-0105-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.