PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 4 | 11-18
Tytuł artykułu

Recycling of styrofoam waste: synthesis, characterization and application of novel phenyl thiosemicarbazone surface

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An attempt has been made to recycle Styrofoam waste to a novel functional polymer, Phenyl thiosemicarbazone surface (PTS). Polystyrene (PS) obtained from Styrofoam waste was acetylated and then condensed to PTS by reacting it with 4-Phenyl-3-thiosemicarbazide ligand and characterized by FT-IR spectroscopy and elemental analysis. Synthesized PTS was applied successfully for the treatment of lead contaminated water by batch extraction method. Sorption variables were optimized (pH 8, adsorbent dose 53mg, initial Pb(II) ion concentration 10mgl-1 and agitation time 90min) by factorial design approach. Lead uptake by PTS was found much sensitive to the pH of Pb(II) ion solution. The maximum removal (99.61%) of Pb(II) ions was achieved at optimum conditions. The Langmuir and D-R isotherm study suggested the monolayer, favorable (RL=0.0001-0.01) and chemisorption (E=20.41±0.12kJmol-1) nature of the adsorption process. The sorption capacity of PTS was found to be 45.25±0.69mgg-1. The FT-IR spectroscopy study showed the involvement of nitrogen and sulphur of thiosemicarbazone moiety of PTS for the uptake of Pb(II) ions by five membered chelate formation.
Wydawca

Rocznik
Tom
14
Numer
4
Strony
11-18
Opis fizyczny
Daty
wydano
2012-12-01
online
2013-01-12
Twórcy
autor
  • University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan
  • University of Sindh, Institute of Advance Research Studies in Chemical Sciences, Jamshoro, Pakistan
Bibliografia
  • 1. Saima, Q.M., Bhanger, M.I., Hasany, S.M. & Khuhawar, M.Y. (2006). Sorption behavior of impregnated styrofoam for the removal of Cd(II) ions. Colloid. Surf. A. 279(1-3), 142-148. DOI: org/10.1016/j.colsurfa.2005.12.052.[Crossref]
  • 2. Sun, H., Zhang, Z. & Song, L. (2010). Study on production of an auxiliary agent of coagulation using waste polystyrene foam and its application to remove phenol from coking plant effluent. Environ. Progress Sust. Energy 29(4), 494-498. DOI: 10.1002/ep.10430.[WoS][Crossref]
  • 3. Rahili, A. & Bakar, D.R.A. (2011). Effect of calcination method on the catalytic degradation of polystyrene using al2o3 supported Sn and Cd catalysts. J. Appl. Sci. 11(8), 1346-1350. DOI: 10.3923/jas.2011.1346.1350.[Crossref]
  • 4. Inagaki, Y. & Kiuchi, S. (2001). Converting waste polystyrene into a polymer flocculant for wastewater treatment. J. Mater. Cycles Waste Manage. 3(1), 14-19. DOI: 10.1007/ s10163-000-0033-8.[Crossref]
  • 5. Abbes, B., Bayoudh, S. & Baklouti, M. (2008). The removal of hardness of water using sulfonated waste plastic. Desalination 222(1-3), 81-86. DOI: 10.1016/j.desal.0000.00.000.[WoS][Crossref]
  • 6. Sulkowski, W.W., Wolinska, A., Pentak, D., Maslanka, S. & Sulkowska, A. (2006). The influence of the chemical additives in polystyrene on the features of flocculants obtained during sulphonation of the polystyrene. Macromol. Symp. 245-246(1), 345-321. DOI: 10.1002/masy.200651389.[Crossref]
  • 7. Sulkowski, W.W., Nowak, K., Sulkowska, A., Wolinska, A., Bajdui, W.M., Pentak, D. & Mikula, B. (2009). Study of the sulfonation of expanded polystyrene waste and of properties of the products obtained. Pure Appl. Chem. 81(12), 2417-2424. DOI: 10.1351/PAC-CON-08-11-20.[WoS][Crossref]
  • 8. Sulkowski, W.W., Nowak, K., Sulkowska, A., Wolinska, A., Bajdur, W.M., Pentak, D. & Mikula, B. (2010). Chemical recycling of polystyrene. Sulfonation with different sulfonation agents. Mol. Cryst. Liq. Cryst. 523(1), 218-227. DOI: 10.1080/15421401003720140.[Crossref][WoS]
  • 9. Wioletta, B., Justyna, P., Beata, M., Anna, S. & Wieslaw, W.S. (2002). Effective polyelectrolytes synthesised from expanded polystyrene wastes. Eur. Polym. J. l38(20), 299-304. DOI: org/10.1016/S0014-3057(01)00191-4.[Crossref]
  • 10. Senkal, B.F. & Yavuz, E. (2007). Sulfonamide based polymeric sorbents for selective mercury extraction. React.Funct. Polym. 67(12), 1465-1470. DOI: 10.1016/j.reactfunctpolym. 2007.07.017.[WoS][Crossref]
  • 11. Kyoung, R.P., Kang, P.H. & Chang, Y.N. (2005). Preparation of PFA-g-polystyrene sulfonic acid membranes by the c-radiation grafting of styrene onto PFA films. React. Funct. Polym. 65(1-2), 47-56. DOI: org/10.1016/j.reactfunctpolym.2004.11.009.[Crossref]
  • 12. Helminen, J. & Paatero, E. (2006). Inorganic solid supported polymer acid catalyst-Sulfonated Polystyrene grafted silica gel in liquid phase esterification. React. Funct. Polym. 66(10), 1021-1032. DOI: 10.1016/j.reactfunctpolym.2006.01.010.[Crossref]
  • 13. Rhodes, C.N., Brown, D.R., Plant, S. & Dale, J.A. (1999). Sulphonated polystyrene resins: acidities and catalytic activities. React. Funct. Polym. 40(3), 187-193. DOI: org/10.1016/ S1381-5148(98)00042-X.http://www.sciencedirect.com/science/ help/doi.htm[Crossref]
  • 14. Wiesław, W. S., Agnieszka, W., Barbara S., Wioletta, M. B., & Anna, S. (2005). Preparation and properties of flocculants derived from polystyrenewaste. Polym. Degrad. Stability 90(2), 272-280. DOI: org/10.1016/j.polymdegradstab.2005.03.021.[Crossref]
  • 15. Siyal, A.N., Memon, S.Q. & Khaskheli, M.I. (2012). Optimization and equilibrium studies of Pb(II) removal by Grewia Asiatica Seed: A factorial design approach. Polish J.Chem. Technol. 14(1), 17-77. DOI: 10.2478/v10026-012-0062-9.[Crossref]
  • 16. Tan, I.A.W., Ahmad, A.L., & Hameed, B.H. (2008). Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem.Eng. J. 137(3), 462-470. DOI: 10.1016/j.cej.2007.04.031.[Crossref]
  • 17. Zulkali, M.M.D., Ahmad, A.L. & Norulakmal, N.H. (2006). Oryza, sativa l. Husk as heavy metal adsorbent: Optimization with lead as model solution. Bioresour. Technol. 97(1), 21-25. DOI: 10.1016/j.biortech.2005.02.007.[Crossref]
  • 18. Cronje, K.J., Chetty, K.,. Carsky, M.,Sahu, J.N. & Meikap, B.C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275(1-3), 276-284. DOI: 10.1016/j.desal.2011.03.019.[WoS][Crossref]
  • 19. Saima, Q.M., Hasany, S.M., Bhanger, M.I. & Khuhawar, M.Y. (2005). Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent. J. Colloid Interf.Sci. 291(1), 84-91. DOI: 10.1016/j.jcis.2005.04.112.[Crossref]
  • 20. Samatya, S., Mizuki, H., Yudai, I., Kawakita, H. & Kazuya, U. (2010). The effect of polystyrene as a porogen on the fluoride ion adsorption of Zr(IV) surface-immobilized resin. React. Funct. Polym. 70(1), 63-68. DOI: org/10.1016/j. reactfunctpolym.2009.10.004.[WoS][Crossref]
  • 21. Vijayakumar, G., Tamilarasan, R. & Dharmendirakumar, M. (2012). Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye rhodamine-b from aqueous solution by the use of natural adsorbent perlite. J. Mater.Environ. Sci. 3(1), 157-170.
  • 22. Giorgio, P. (2010). Thiosemicarbazone metal complexes: From structure to activity. The Open Crystallogr. J. 3, 16-28.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_v10026-012-0095-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.