Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 13 | 2 | 54-56
Tytuł artykułu

An alternative method to determine the diffusion coefficient for the shrinking core model

Treść / Zawartość
Warianty tytułu
Języki publikacji
A new method to determine the effective diffusion coefficient of sorbate in sorbent granule based on the analytical solution of the shrinking core model (SCM) has been proposed. The experimental data presented by Lewandowski and Roe1 concerning the sorption of copper ions by alginate granules have been applied to compare the analytical and numerical methods. The results obtained by both methods are very close.

Opis fizyczny
  • Faculty of Technology and Chemical Engineering Science, University of Technology and Life Sciences, Seminaryjna 3, 85-435 Bydgoszcz, Poland
  • Faculty of Technology and Chemical Engineering Science, University of Technology and Life Sciences, Seminaryjna 3, 85-435 Bydgoszcz, Poland
  • Faculty of Technology and Chemical Engineering Science, University of Technology and Life Sciences, Seminaryjna 3, 85-435 Bydgoszcz, Poland
  • Lewandowski, Z. & Roe, F. (1994). Communication to the Editor. Diffusivity of Cu2+ in Calcium Alginate Gel Beads: Recalculation. Biotechnol. Bioeng. 43, 186-187. DOI: 10.1002/bit.260430213.
  • Levenspiel (1972). Chemical Reaction Engineering, Second ed. John Wiley & Sons, Inc., New York, 361-373.
  • Lazaridis, N.K. & Charalambous, Ch. (2005). Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate-goethite beads. Water Res. 39, 4385-4396. DOI:10.1016/j.watres.2005.09.013.[Crossref][PubMed]
  • Ko, D.C.K., Porter, J.F. & Mckay, G. (2001). Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res. 35, 3876-3886. DOI:10.1016/S0043-1354(01)00114-2.[PubMed][Crossref]
  • Pritzker, M.D. (1996). Shrinking core model for systems with facile heterogeneous and homogeneous reactions. Chem. Eng. Sci. 51, 3631-3645. DOI:10.1016/0009-2509(95)00403-3.[Crossref]
  • Lapidus, G. (1992). Mathematical modelling of metal leaching in nonporous minerals. Chem. Eng. Sci. 47, 1933-1941. DOI: 10.1016/0009-2509(92)80311-Y.[Crossref]
  • Crundwell, F.K. & Godorr, S.A. (1997). A mathematical model of the leaching of gold in cyanide solutions. Hydrometallurgy 44, 147-162. DOI:10.1016/S0304-386X(96)00039-4.[Crossref]
  • Dicinoski, Greg W. & Gahan, Lawrence R., et. al. (2000). Application of the shrinking core model to the kinetics of extraction of gold(I), silver(I) and nickel(II) cyanide complexes by novel anion exchange resins. Hydrometallurgy 56, 323-336. DOI:10.1016/S0304-386X(00)00082-7.[Crossref]
  • Chen, B., Hui, C.W. & Mckay, G. (2001). Film-Pore Diffusion Modeling for the Sorption of Metal Ions from Aqueous Effluents onto Peat. Water Res. 35, 3345-3356. DOI:10.1016/S0043-1354(01)00049-5.[Crossref][PubMed]
  • Beolchini, F., Pagnanelli, F., Toro, L. & Veglio, F. (2003). Biosorption of copper by Sphaerotilus natans immobilised in polysulfone matrix: equilibrium and kinetic analysis. Hydrometallurgy 70, 101-112. DOI:10.1016/S0304-386X(03)00049-5.[Crossref]
  • Nona, K. & Liddell, C. (2005). Shrinking core models in hydrometallurgy: what are not being told about the pseudo-steady approximation. Hydrometallurgy 79, 62-68. DOI:10.1016/j.hydromet.2003.07.011.[Crossref]
  • Deans, J.R. & Dixon, B.G. (1992). Uptake of Pb(II) and Cu(II) by novel biopolymers. Water Res. 26, 469-472. DOI:10.1016/0043-1354(92)90047-8.[Crossref]
  • Jeon, C., Park, J.Y. & Yoo, Y.J. (2002). Characteristics of metal removal using carboxylated alginic acid. Water Res. 36, 1814-1824. DOI:10.1016/S0043-1354(01)00389-X.[PubMed][Crossref]
  • Jang, L.K., Nguyen, D. & Geesey, G.G. (1995). Selectivity of Alginate gel for Cu vs Co. Water Res. 29, 307-313. DOI:10.1016/0043-1354(94)E0090-S.[Crossref]
  • Jang, L.K. Nguyen, D. & Geesey, G.G. (1999). An equilibrium model for absorption of multiple divalent metals by alginate gel under acidic conditions. Water Res. 33, 2826-2832. DOI:10.1016/S0043-1354(98)00373-X. [Crossref]
  • Rao, M.G., Gupta, A.K. (1982). Ion Exchange Process Accompanied by Ionic Reactions. Chem. Eng. J. 24, 181-190.[Crossref]
  • Arevalo, E., Rendueles, M., Fernandez, A., Rodriques, A. & Diaz, M. (1998). Uptake of copper and cobalt in a complexing resin: shrinking-core model with two reactions fronts. Sep. Purif. Technol. 13, 37-46. DOI:10.1016/S1383-5866(97)00054-3.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.