Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 13 | 1 | 16-19
Tytuł artykułu

The effect of thermal treatments on the mechanical and electrical properties of nickel-coated carbon fibre composites

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nickel-coated carbon fibre (NiCCF) composites may find technological applications within many industrial sectors, including: laptop computers, automotive and military industries. Typically, these applications require that NiCCF be subjected to extensive material processing; thus, optimization of mechanical (and electrical) properties for this material at the stage of its production is of significant importance. The present paper reports the application of specific, high-temperature heat treatments to laboratory-produced 12K50 NiCCF material, carried-out in order to improve the ductility and interfacial adhesion of electrodeposited Ni coating to the surface of carbon fibre substrate.
Wydawca

Rocznik
Tom
13
Numer
1
Strony
16-19
Opis fizyczny
Daty
wydano
2011-01-01
online
2011-03-17
Twórcy
  • Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-957 Olsztyn, Poland
Bibliografia
  • Chung, D. D. L. (2004). Electrical applications of carbon materials. J. Mater. Sci. 39(8), 2645-2661. DOI: 10.1023/ B:JMSC.0000021439.18202.ea.[Crossref]
  • Markham, D. (2000). Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Mater. Design 21(1), 45-50. DOI: 10.1016/S0261-3069(99)00049-7.[Crossref]
  • Tzeng, S. S. & Chang, F. Y. (2001). EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater. Sci. Eng. A 302(2), 258-267. DOI: 10.1016/ S0921-5093(00)01824-4.[Crossref]
  • Chung, D. D. L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279-285. DOI: 10.1016/S0008-6223(00)00184-6.[WoS][Crossref]
  • Fu, S. Y., Lauke, B., Mader, E., Yue, C. Y. & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites: Part A 31(10), 1117-1125. DOI: 10.1016/S1359-835X(00)00068-3.[Crossref]
  • Donnet, J. B. & Bansal, R. C. (1990). Carbon Fibers. New York, USA: Marcel Dekker, Inc.
  • Soens, L. J. (1987). U. S. Patent No. 4,664,971. Washington, D. C.: U. S. Patent and Trademark Office.
  • Adriaensen, L. & Verhaeghe, F. (1988). U. S. Patent No. 4,788,104. Washington, D. C.: U. S. Patent and Trademark Office.
  • Soens, L. J. (1995). U. S. Patent No. 5,397,608. Washington, D. C.: U. S. Patent and Trademark Office.
  • Cogswell, F. N., Hezzell, D. J. & Williams, P. J. (1985). U. S. Patent No. 4,559,262. Washington, D. C.: U. S. Patent and Trademark Office.
  • Cogswell, F. N., Hezzell, D. J. & Williams, P. J. (1991). U. S. Patent No. 5,019,450. Washington, D. C.: U. S. Patent and Trademark Office.
  • Cogswell, F. N., Hezzell, D. J. & Williams, P. J. (1993). U. S. Patent No. 5,213,889. Washington, D. C.: U. S. Patent and Trademark Office.
  • Iyer, S., Dzal, L. T. & Jayaraman, K. (1992). U. S. Patent No. 5,102,690. Washington, D. C.: U. S. Patent and Trademark Office.
  • Working, D. (1993). U. S. Patent No. 5,213,843. Washington, D. C.: U. S. Patent and Trademark Office.
  • Bellemare, D. J. (1997). U. S. Patent No. 5,639,307. Washington, D. C.: U. S. Patent and Trademark Office.
  • Hexcel Corporation. HexTow™ AS4C Carbon Fiber. Product Data. Retrieved April 21, 2010, from
  • Lowenheim, F. A. (2000). In M. Schlesinger & M. Paunovic (Eds.), Modern Electroplating (4th Ed.). New York, USA: John Wiley & Sons, Inc.
  • Di Bari, G. (2002). Nickel plating. Metal Finishing 100(1), 257-274. DOI: 10.1016/S0026-0576(02)82027-X.[Crossref]
  • Pierozynski, B. & Smoczynski, L. (2008). Electrochemical corrosion behavior of nickel-coated carbon fiber materials in various electrolytic media. J. Electrochem. Soc. 155(8), C427-C436. DOI: 10.1149/1.2936994.[WoS][Crossref]
  • Ulcay, Y. & Altun, S. (2004). Effects of gamma irradiation on some mechanical properties of novoloid fibers. Fibers and Polymers 5(2), 156-159. DOI: 10.1007/BF02902931.[Crossref]
  • ASTM Standards. (2010). Standard test method for tensile properties of yarns by the single-strand method. ASTM D2256/D2256M-10e1. ASTM International. West Conshohocken (PA). DOI: 10.1520/D2256_D2256M-10E01.[Crossref]
  • Tzeng, S. S. (2006). Catalytic graphitization of electroless Ni-P coated PAN-based carbon fibers. Carbon 44, 1986-1993. DOI: 10.1016/j.carbon.2006.01.024.[WoS][Crossref]
  • Zhou, H., Yu, Q., Peng, Q., Wang, H., Chen, J. & Kuang, Y. (2008). Catalytic graphitization of carbon fibers with electrodeposited Ni-B alloy coating. Mater. Chem. Phys. 110, 434-439. DOI: 10.1016/j.matchemphys.2008.02.033.[Crossref][WoS]
  • Maldonado-Hodar, F. J., Moreno-Castilla, C., Rivera-Utrilla, J., Hanzawa, Y. & Yamada, Y. (2000). Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16(9), 4367-4373. DOI: 10.1021/la991080r.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_v10026-011-0003-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.