PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 1 | 18-27
Tytuł artykułu

Determination of azine and triphenyl methane dye in wastewater using polyurethane foam functionalized with tannic acid

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple and sensitive spectrophotometric method for the determination of azine (neutral red) and triphenyl methane (rosaniline) dye has been developed using tannic acid-polyurethane foam (TPF). TPF was prepared by coupling a polyhydroxypolyurethane foam matrix with tannic acid. TPF was characterized using a combination of analytical methods including IR and NMR spectroscopy, elemental analysis, density and pHZPC. The qualitative and quantitative determination of dyes is based on its sorption on the surface of the TPF. The sorption behavior of dye onto the TPF was investigated by batch and dynamic processes. The maximum sorption of neutral red and rosaniline was in the pH range of 7-9. The kinetics of sorption of the dye by the TPF was found to be fast with average values of half-life of sorption of 1.2 min. The equilibrium process was well described by the Freundlich isotherm model. The visual detection limit of dye in aqueous solution is 0.1 μg mL-1. The Sandell’s sensitivity is 0.26 ng cm-2 with molar absorptivity 1.3 × 106 L mol-1 cm-1. The average sorption capacity of TPF and the recovery of dyes were 0.47 mmol g-1 and 96.4 % (RSD ~ 1.5%, n=7). The method has been applied to various wastewater samples.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
1
Strony
18-27
Opis fizyczny
Daty
otrzymano
2012-10-09
zaakceptowano
2013-08-23
online
2013-10-30
Twórcy
  • Department of Chemistry Faculty of
    Science, Damietta University, Damietta,
    Egypt, eamoawed@yahoo.com
  • Department of Chemistry, Dammam
    University, Dammam, Saudi Arabia
  • Department of Chemistry, Dammam
    University, Dammam, Saudi Arabia
Bibliografia
  • [1] Pel´aez-Cid A., Blasco-Sancho S., Matysik F. Determination of textile dyes by means of non-aqueous capillary electrophoresis with electrochemical detection, Talanta, 2008, 75, 1362–1368.
  • [2] Masukawa Y., Separation and determination of basic dyes formulated in hair care products by capillary electrophoresis, J. Chromatogr. A, 2006, 1108, 140-144.
  • [3] Goldmann T., Taroni F., Margot P., Analysis of Dyes in Illicit Pills (Amphetamine and Derivatives), J. Forensic Sci., 2004, 49, 716-722.
  • [4] Mitrowska K., Posyniak A., Zmudzki J., Determination of malachite green and leucomalachite green in carp muscle by liquid chromatography with visible and fluorescence detection, J. Chromatogr. A, 2005, 1089, 187-192.
  • [5] Halme K., Lindfors E., Peltonen K., A confirmatory analysis of malachite green residues in rainbow trout with liquid chromatography–electrospray tandem mass spectrometry, J. Chromatogr. B, 2007, 845, 74-79.
  • [6] Arroyo D., Ortiz M.C., Sarabia L.A., Palacios F., Advantages of PARAFAC calibration in the determination of malachite green and its metabolite in fish by liquid chromatography–tandem mass spectrometry, J. Chromatogr. A, 2008, 1187, 1-10.
  • [7] Scherpenisse P., Bergwerff A.A., Determination of residues of malachite green in finfish by liquid chromatography tandem mass spectrometry, Anal. Chim. Acta, 2005, 529, 173-177.
  • [8] D´avila-Jim´enez M.M., Elizalde-Gonz´alez M.P., Pel´aez-Cid A.A., Adsorption interaction between natural adsorbents and textile dyes in aqueous solution, Colloids Surf. A, 2005, 254, 107-114.
  • [9] Plum A., Engewald W., Rehorek A., Rapid qualitative pyrolysis GC-MS analysis of carcinogenic aromatic amines from dyed textiles, Chromatographia, 2003, 57, 243-248.
  • [10] Huang H.Y., Shih Y.C., Chen Y.C., Determining eight colorants in milk beverages by capillary electrophoresis, J. Chromatogr. A, 2002, 959, 317-325
  • [11] Blatny P., Fischer C., Rizzi A., Kenndler E., Linear polymers applied as pseudo-phases in capillary zone electrophoresis of azo compounds used as textile dyes, J. Chromatogr. A, 1995, 717, 157-166.
  • [12] Hamai S., Sato K., Capillary electrophoretic and spectrophotometric investigations of the complexation of Methylene Blue with 2-naphthol-6-sulfonate and 1,2-naphthoquinone-4-sulfonate in solution, Dyes Pigments, 2003, 57, 15-20.
  • [13] Matysik F., Non-aqueous capillary electrophoresis with electrochemical detection, J. Chromatogr. A, 1998, 802, 349-354.
  • [14] Matysik F., Potentialities of electrochemical detection in conjunction with non-aqueous capillary electrophoresis, Electrochim. Acta, 1998, 43, 3475-3482.
  • [15] Fakhari A.R., Breadmore M.C., Macka M., Haddad P.R. Non-aqueous capillary electrophoresis with red light emitting diode absorbance detection for the analysis of basic dyes, Anal. Chim. Acta, 2006, 580, 188-193.
  • [16] Tsai C., Lin J., Lin C., Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes, Talanta, 2007, 72, 368-372.[WoS]
  • [17] Cheng D., Li B., Simple and sensitive fluorometric sensing of malachite green with native double-stranded calf thymus DNA as sensing material, Talanta, 2009, 78, 949-953. [WoS]
  • [18] Yi H., Qu W., Huang W., Electrochemical determination of malachite green using a multi-wall carbon nanotube modified glassy carbon electrode, Microchim. Acta, 2008, 160, 291-296.
  • [19] Marczenko Z. Spectrophotometric Determination of Elements, 3rd ed., Ellis Horwood, Chichester, 1986.
  • [20] Robaina N.F., dos Reis L.G.T., Cassella R.J., Diffuse reflectance determination of Malachite Green using polyurethane foam as solid support and sodium dodecylsulfate as counter ion, Talanta, 2011, 85, 749-753.[WoS]
  • [21] Zaporozhets O.A., Bas J.P., Kachan I.A., Zinko L.S., Davydov V.I., Solid-phase spectrophotometric and test determination of silicate in natural water, Talanta, 2012, 90, 85-90.
  • [22] Moawed E.A., Preparation of novel ion exchange polyurethane foam and its application for separation and determination of palladium in environmental samples, Anal. Chim. Acta, 2006, 580, 263-270.
  • [23] El-Shahat M.F., Moawed E.A., Burham N., Preparation, characterization and applications of novel iminodiacetic polyurethane foam (IDA-PUF) for determination and removal of some alkali metal ions from water, J. Hazard. Mater., 2008, 160, 629-633.[WoS]
  • [24] Robaina N.F., Soriano S., Cassella R.J., Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process, J. Hazard. Mater., 2009, 167, 653-659.[WoS]
  • [25] Abdel Azeem S.M., Arafa W.A.A., El-Shahat M.F., Synthesis and application of alizarin complexone functionalized polyurethane foam: Preconcentration/separation of metal ions from tap water and human urine, J. Hazard. Mater., 2010, 182, 286-294.[WoS]
  • [26] Moawed E.A., Sorption behaviour, diffusion mechanism of the iron metal ions in the environmental samples onto polyurethane foam, Anal. Chem. Ind. J., 2011, 10, 93-100.
  • [27] Farag A.B., Moawed E.A., El-Shahat M.F., Sensitive detection, selective determination, and removal of nitrite from water using the reactive function group of polyurethane foam, Anal. Lett., 2005, 38, 809-824.
  • [28] Moawed E.A., Burham N., El-Shahat M.F., Selective separation and determination of copper and gold in gold alloy using ion exchange polyurethane foam, J. Liq. Chromatog. & Relat. Techn., 2007, 30, 1903-1914.
  • [29] El-Shahat M.F., Moawed E.A., Zaid M.A.A., The chromatographic behavior of group(IIB) metal ions on polyurethane foam functionalized with 8-hydroxyquinoline, Anal. Bioanal. Chem., 2004, 378, 470-478
  • [30] Moawed E.A., Effect of heating processes on Salvadora persica (Miswak) and its application for removal and determination of aniline blue from wastewater, J. Taibah Univ. Sci., 2013, 7, 26–34
  • [31] Kumar R., Ahmad R., Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW), Desalination, 2011, 265, 112–118.[WoS]
  • [32] Saeed A., Sharif M., Iqbal M., Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption, J. Hazard. Mater., 2010, 179, 564–572.[WoS]
  • [33] El-Shahat M.F., Moawed E.A., Farag A.B., Chemical enrichment and separation of uranyl ions in aqueous media using novel polyurethane foam chemically grafted with different basic dyestuff sorbents, Talanta, 2007, 71, 236-241.[WoS]
  • [34] Ofomaja A.E., Naidoo E.B., Modise S.J., Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder, J. Environ. Manag., 2010, 91, 1674-1685
  • [35] Zou X., Pan J., Ou H., Wang X., Guan W., Li C., Yan Y., Duanc Y., Adsorptive removal of Cr(III) and Fe(III) from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics, Chem. Eng. J. 2011, 167, 112–121[WoS]
  • [36] Hasany S.M., Saeed M.M., Ahmed M., Sorption of traces of silver ions onto polyurethane foam from acidic solution, Talanta, 2001, 54, 89–98
  • [37] El-Shahawi M.S., Bashammakh A.S., Al-Sibaai A.A., Orief M.I., Al-Shareef F.M., Solid phase preconcentration and determination of trace concentrations of total gold (I) and/or (III) in sea and wastewater by ion pairing impregnated polyurethane foam packed column prior flame atomic absorption spectrometry, Inter. J. Miner. Process. 2011, 100, 110–115.
  • [38] Barkat M., Nibou D., Chegrouche S., Mellah A., Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions, Chem. Eng. & Process., 2009, 48, 38–47.[WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_sampre-2013-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.