Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 8 | 6 | 766-775
Tytuł artykułu

The influence of pemirolast on autonomic imbalance in rat cystitis model

Treść / Zawartość
Warianty tytułu
Języki publikacji
Cyclophosphamide (CP) treatment is associated with the risk of haemorrhagic cystitis (HC). Moreover, CP-induced HC is complicated by autonomic nervous system (ANS) dysfunction. Pemirolast is thought to be a mast cell stabiliser that inhibits the release of many inflammatory mediators and sensory neuropeptides, and thus, it may be considered a potential chemoprotective HC agent. The aim of the study was to indirectly estimate the effect of pemirolast in experimental HC by measuring ANS activity with the heart rate variability (HRV) method. In CP-treated rats, we found a decreasing trend of overall autonomic activity, together with an imbalance between the main components, and a dominant very low frequency (VLF) power component. Pemirolast treatment did not improve the total HRV power value or the main non-normalized HRV components. Moreover, CP-HC animals treated with pemirolast displayed a different disproportion of normalized spectral components as compared to both control and CP-HC animals without pemirolast treatment, with the balance between normalized low frequency (nLF) and normalized high frequency (nHF) shifted towards nLF. This finding, together with a relatively high VLF tension, indicates that the pemirolast treatment resulted in high sympathetic activity that may contribute to HC exacerbation; thus, this agent seems to be ineffective in CP-induced HC.

Opis fizyczny
  • Department of Pathophysiology, Jagiellonian University Medical College, Poland, Kraków, 31-121, Czysta 18,
  • Department of Pathophysiology, Jagiellonian University Medical College, Poland, Kraków, 31-121, Czysta 18
  • Department of Pathophysiology, Jagiellonian University Medical College, Poland, Kraków, 31-121, Czysta 18
  • [1] Brock N., Oxazaphosphorine cytostatics: pastpresent-future: seventh cain memorial award lecture, Cancer Res. J., 1989, 49, 1–7
  • [2] Brock N., The history of the oxazaphosphorine cytostatics, Cancer, 1996, 78, 542–547<542::AID-CNCR23>3.0.CO;2-Y[Crossref]
  • [3] Ross W.C., The chemistry of cytotoxic alkylating agents, Adv. Cancer Res., 1953, 1, 397–449[Crossref]
  • [4] Brock N., Ideas and reality in the development of cancer chemiotherapeutic agents, with particular reference to oxazaphosphorine cytostatics, J. Cancer Res. Clin. Oncol., 1986, 111, 1–12[Crossref]
  • [5] Kerbush T., de Kraker J., Keizer J., van Putten J.W.G., Groen H.J.M., Jansen R.L.H., et al., Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolits, Clin. Pharmacokinet., 2001, 40, 41–62[Crossref]
  • [6] Friedman O.M., Seligman A.M., Preparation of N-phosphorylated derivatives of bis-β-chloroethylamine, J. Am. Chem. Soc., 1954, 76, 655–658[Crossref]
  • [7] Lawson M., Vasilaras A., De Vries A., Mactaggart P., Nicol D., Urological implications of cyclophosphamide and ifosfamide, Scand. J. Urol. Nephrol., 2008, 42, 309–317[Crossref]
  • [8] Levine L.A., Richie J.P., Urological complications of cyclophosphamide, J. Urol., 1989, 141, 1063–1069
  • [9] Korkmaz A., Topal T., Oter S., Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation, Cell Biol. Toxicol., 2007, 23, 303–312[Crossref][WoS]
  • [10] Dobrek Ł., Thor P.J., Bladder urotoxicity pathophysiology induced by the oxazaphosphorine alkylating agents and its chemoprevention, Post. Hig. Med. Dosw., 2012, 66, 592–602[Crossref]
  • [11] Holzer P., Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides, Neuroscience, 1988, 24, 739–768[Crossref]
  • [12] Dobrek Ł., Thor P., Heart rate variability in overactive bladder experimental model, Arch. Med. Sci., (in press, in English), DOI: 10.5114/aoms.2012.30946 [Crossref][WoS]
  • [13] Gyorfi A., Fazekas A., Posch E., Irmes F., Rosivall L., Role of histamine in the development of neurogenic inflammation of rat oral mucosa, Agents Action, 1991, 32, 229–236[Crossref]
  • [14] Steinhoff M., Stander S., Seeliger S., Ansel J.C., Schmelz M., Luger T., Modern aspects of cutaneous inflammation, Arch. Dermatol., 2003, 139, 1479–1488[Crossref]
  • [15] Kemp J.P., Bernstein I.L., Bierman C.W., Li J.T., Siegel S.C., Spangenberg R.D., et al., Pemirolast, a new oral nonbronchodilator drug for chronic asthma, Ann. Allegry, 1992, 68, 488–491
  • [16] Kawashima T., Iwamoto I., Nakagawa N., Tomioka H., Yoshida S., Inhibitory effect of pemirolast, a novel antiallergic drug, on leukotriene C4 and granule protein release from human eosinophils, Int. Arch. Allergy Immunol., 1994, 103, 405–409[Crossref]
  • [17] Fujimiya H., Nakagawa S., Miyata H., Nozawa Y., Effect of a novel antiallergic drug, pemirolast, on activation of rat peritoneal mast cells: inhibition of exocytotic response and membrane phospholipid turnover, Int. Arch. Allergy Immunol., 1991, 96, 62–67[Crossref]
  • [18] Itoh Y., Sendo T., Hirakawa T., Takasaki S., Goromaru T., Nakano H., et al., Pemirolast potently attenuates paclitaxel hypersensitivity reactions through inhibition of the release of sensory neuropeptides in rats, Neuropharmacology, 2004, 46, 888–894[Crossref]
  • [19] Yahata H., Saito M., Sendo T., Itoh Y., Uchida M., Hirakawa T., et al., Prophylactic effect of pemirolast, an antiallergic agent, against hypersensitivity reactions to paclitaxel in patients with ovarian cancer, Int. J. Cancer, 2006, 118, 2626–2638
  • [20] Chopra B., Barrick S.R., Meyers S., Beckel J.M., Zeidel M.L., Ford A.P.D.W., et al., Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium, J. Physiol., 2005, 562(Pt 3), 859–871[Crossref]
  • [21] Dinis P., Churrua A., Avelino A., Yaqoob M., Bevan S., Nagy I., et al., Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis, J. Neurosci., 2004, 24, 11253–11263[Crossref]
  • [22] Tatsushima Y., Egashira N., Kawashiri T., Mihara Y., Yano T., Mishima K., et al., Involvement of substance P in peripheral neuropathy induced by paclitaxel but not oxaliplatin, J. Pharmacol. Exp. Therap., 2011, 337, 226–235[Crossref]
  • [23] Tatsushima Y., Egashira N., Matsushita N., Kurobe K., Kawashiri T., Yano T., et al., Pemirolast reduces cisplatin-induced kaolin intake in rats, Eur. J. Pharmacol., 2011, 661, 57–62[Crossref]
  • [24] Gohda T., Ra C., Hamada C., Tsuge T., Kawachi H., Tomino Y., Suppressive activity of pemirolast potassium, an antiallergic drug, on glomerulonephritis. Studies in glomerulonephritis model rats and in patients with chronic glomerulonephritis concerrently affected by allergic rhinitis, Arzneimittelforschung, 2008, 58, 18–23 (in German)
  • [25] Malik M., Bigger J.T., Camm A.J., Guidelines. Heart rate variability. Standards of measurements, physiological interpretations and clinical use. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology, Eur. Heart J., 1996, 17, 354–381[Crossref]
  • [26] Maggi C.A., Meli A., Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: general considerations, Experientia, 1986, 42, 109–114[Crossref]
  • [27] Maggi C.A., Meli A., Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 2: cardiovascular system, Experientia, 1986, 42, 292–297[Crossref]
  • [28] Morais M.M., Belarmino-Filho J.N., Brito G.A.C., Ribeiro R.A., Pharmacological and histopathological study of cyclophosphamide-induced hemorrhagic cystitis - comparison of the effects of dexamethasone and Mesna. Braz. J. Med. Biol. Res., 1999, 32, 1211–1215[Crossref]
  • [29] Schroder A., Newgreen D., Andersson K.E., Detrusor responses to prostaglandin e2 and bladder outlet obstruction in wild-type and ep1 receptor knockout mice, J. Urol., 2004, 172, 1166–1170[Crossref]
  • [30] Zeng J., Pan C., Jiang C., Lindström S., Cause of residual urine in bladder outlet obstruction: an experimental study in the rat, J. Urol., 2012, 188, 1027–1032[Crossref]
  • [31] Bilchick K.C., Berger R.D., Heart rate variability, J. Cardiovasc. Electrophysiol., 2006, 17, 693–694
  • [32] Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., Wager T.D., A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health, Neurosci. Biobehav. Rev., 2012, 36, 747–756[WoS][Crossref]
  • [33] Stauss H.M., Heart rate variability, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 285, R927–R931
  • [34] Pumprla J., Howorka K., Groves D., Chester M., Nolan J., Functional assessment of heart rate variability: physiological basis and practical applications, Int. J. Cardiol., 2002, 84, 1–14[Crossref]
  • [35] Taylor J.A, Carr D.L., Myers C.W., Eckberg D.L., Mechanisms underlying very low frequency RRinterval oscillations in humans, Circulation, 1998, 98, 547–555[Crossref]
  • [36] Silva Soares P., da Nobrega A.C.L., Ushizima M.R., Irigoyen M.C.C., Cholinergic stimulation with piridostigmine increases heart rate variability and baroreflex sensivity in rats, Auton. Neurosci., 2004, 113, 24–31[Crossref]
  • [37] Thayer J.F., Fischer J.E., Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults, J. Int. Med., 2009, 265, 439–447[Crossref][WoS]
  • [38] Tracey K.J., The inflammatory reflex, Nature, 2002, 420, 853–859[Crossref]
  • [39] Thayer J.F., Vagal tone and the inflammatory re- flex, Cleve. Clin. J. Med., 2009, 76, S23–S26[Crossref]
  • [40] Flierl M.A., Rittirsch D., Nadeau B.A., Chen A.J., Sarma J.V., Zetoune F.S., et al., Phagocyte-derived catecholamines enhance acute inflammatory injury, Nature, 2007, 449, 721–725[WoS][Crossref]
  • [41] Flierl M.A., Rittirsch D., Nadeau B.A., Sarma J.V., Day D.E., Lentsch A.B., et al., Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response, PLos One, 2009, 4, e4414[Crossref]
  • [42] Johnson J.D., Campisi J., Sharkey C.M., Kennedy S.L., Nickerson M., Greenwood B.N., Fleshner M., Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines, Neuroscience, 2005, 135, 1295–1307[Crossref]
  • [43] Elenkov I.J., Papanicolaou D.A., Wilder R.L., Chrousos G.P., Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications, Proc. Assoc. Am. Physicians, 1996, 108, 374–381
  • [44] Maestroni G.J.M., Mazzola P., Langerhans cells β2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity, J. Neuroimmunol., 2003, 144, 91–99
  • [45] Connor T.J., Brewer C., Kelly J.P., Harkin A., Acute stress suppresses pro-inflammatory cytokines TNF-α and Il-1β independent of a catecholamine- driven increase in Il-10 production, J. Neuroimmunol., 2005, 159, 119–128
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.