Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 8 | 6 | 749-761
Tytuł artykułu

Parahippocampal corpora amylacea and neuronal lipofuscin in human aging

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of this research was to quantify the number of corpora amylacea and lipofuscin-bearing neurons in the parahippocampal region of the brain. Right parahippocampal gyrus specimens of 30 cadavers were used as material for histological and morphometric analyses. A combined Alcian Blue and Periodic Acid-Schiff technique was used for identification and quantification of corpora amylacea and lipofuscin-bearing neurons. Immunohistochemistry was performed using S100 polyclonal, neuron-specific enolase and glial fibrillary acidic protein monoclonal antibodies for differentiation of corpora amylacea and other spherical inclusions of the aging brain. Cluster analysis of obtained data showed the presence of three age groups (median age: I = 41.5, II = 68, III = 71.5). The second group was characterized by a significantly higher numerical density of subcortical corpora amylacea and number of lipofuscin-bearing neurons than other two groups. Values of the latter cited parameters in the third group were insignificantly higher than the first younger group. Linear regression showed that number of parahippocampal lipofuscin-bearing neurons significantly predicts numerical density of subcortical corpora amylacea. The above results suggest that more numerous parahippocampal region corpora amylacea and lipofuscin-bearing neurons in some older cases might represent signs of its’ neurons quantitatively-altered metabolism.

Opis fizyczny
  • Medical Faculty, Department of Anatomy, University of Podgorica, Kruševac bb, 81000, Podgorica, Montenegro
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia,
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Pathology, Clinical Center Niš, University of Niš, Blvd. Dr Zoran Djindjić 48, 18000, Niš, Serbia
  • Faculty of Sport and Physical Education, Department of medicine, University of Niš, Čarnojevićeva 10A, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • Medical Faculty, Department of Anatomy, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000, Niš, Serbia
  • [1] Blaizot X., Martinez-Marcos A., Arroyo-Jimenez Md Mdel M., Marcos P., Artacho-Pérula E., Muñoz M., et al., The parahippocampal gyrus in the baboon: anatomical, cytoarchitectonic and magnetic resonance imaging (MRI) studies, Cereb. Cortex., 2004, 14, 231–246[Crossref]
  • [2] Van Hoesen GW., Anatomy of the medial temporal lobe Magn. Reson. Imaging., 1995, 13, 1047–1055[Crossref]
  • [3] Eichenbaum H., Lipton PA., Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas, Hippocampus., 2008, 18, 1314–1324[Crossref][WoS]
  • [4] Keller JN., Age-related neuropathology, cognitive decline, and Alzheimer’s disease, Ageing. Res. Rev., 2006, 5, 1–13[Crossref]
  • [5] Tisserand DJ., Visser PJ., van Boxtel MP., Jolles J., The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range, Neurobiol. Aging., 2000, 21, 569–576[Crossref]
  • [6] Du AT., Schuff N., Amend D., Laakso MP., Hsu YY., Jagust WJ., et al., Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry., 2001, 71, 441–447[Crossref]
  • [7] Goncharova II., Dickerson BC., Stoub TR., deToledo-Morrell L., MRI of human entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiol. Aging., 2001, 22, 737–745[Crossref]
  • [8] Bottino CM., Castro CC., Gomes RL., Buchpiguel CA., Marchetti RL., Neto MR., Volumetric MRI measurements can differentiate Alzheimer’s disease, mild cognitive impairment, and normal aging, Int. Psychogeriatr., 2002, 14, 59–72[Crossref]
  • [9] Pantel J., Kratz B., Essig M., Schröder J., Parahippocampal volume deficits in subjects with aging-associated cognitive decline, Am. J. Psychiatry., 2003, 160, 379–382[Crossref]
  • [10] Pennanen C., Kivipelto M., Tuomainen S., Hartikainen P., Hänninen T., Laakso MP., et al., Hippocampus and entorhinal cortex in mild cognitive impairment and early AD, Neurobiol. Aging., 2004, 25, 303–310[Crossref]
  • [11] Burgmans S., van Boxtel MP., van den Berg KE., Gronenschild EH., Jacobs HI., Jolles J., et al., The posterior parahippocampal gyrus is preferentially affected in age-related memory decline, Neurobiol. Aging., 2011, 32, 1572–1578[WoS][Crossref]
  • [12] Wang H., Golob E., Bert A., Nie K., Chu Y., Dick MB., et al., Alterations in regional brain volume and individual MRI-guided perfusion in normal control, stable mild cognitive impairment, and MCI-AD converter, J. Geriatr. Psychiatry. Neurol., 2009, 22, 35–45[Crossref][WoS]
  • [13] Sánchez-Benavides G., Gómez-Ansón B., Molinuevo JL., Blesa R., Monte GC., Buschke H., et al., Medial temporal lobe correlates of memory screening measures in normal aging, MCI, and AD. J. Geriatr. Psychiatry. Neurol., 2010, 23, 100–108[WoS][Crossref]
  • [14] Echávarri C., Aalten P., Uylings HB., Jacobs HI., Visser PJ., Gronenschild EH., et al., Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease, 2011, Brain. Struct. Funct., 2011, 215, 265–271[Crossref][WoS]
  • [15] Miettinen PS., Pihlajamäki M., Jauhiainen AM., Niskanen E., Hänninen T., Vanninen R., et al., Structure and function of medial temporal and posteromedial cortices in early Alzheimer’s disease, 2011, Eur. J. Neurosci., 34, 320–330[Crossref]
  • [16] Raz N., Gunning-Dixon FM., Head D., Dupuis JH., Acker JD., Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging, Neuropsychology., 1998, 12, 95–114[Crossref]
  • [17] Raz N., Rodrigue KM., Head D., Kennedy KM., Acker JD., Differential aging of the medial temporal lobe: a study of a five-year change, Neurology., 2004, 62, 433–438[Crossref]
  • [18] Raz N., Lindenberger U., Rodrigue KM., Kennedy KM., Head D., Williamson A., et al., Regional brain changes in aging healthy adults: general trends, individual differences and modifiers, Cereb. Cortex., 2005, 15, 1676–1689[Crossref]
  • [19] Raz N., Ghisletta P., Rodrigue KM., Kennedy KM., Lindenberger U., Trajectories of brain aging in middle-aged and older adults: regional and individual differences, Neuroimage., 2010, 51, 501–511[Crossref]
  • [20] Anderton BH., Ageing of the brain, Mech. Ageing. Dev., 2002, 123, 811–817[Crossref]
  • [21] Rapp PR., Deroche PS., Mao Y., Burwell RD., Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits, Cereb. Cortex., 2002, 12, 1171–1179[Crossref]
  • [22] Heinsen H., Henn R., Eisenmenger W., Götz M., Bohl J., Bethke B., et al., Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes, Anat. Embryol. (Berl)., 1994, 190, 181–194
  • [23] Gazzaley AH., Thakker MM., Hof PR., Morrison JH., Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys, Neurobiol. Aging., 1997, 18, 549–553[Crossref]
  • [24] Merrill DA., Roberts JA., Tuszynski MH., Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates, J. Comp. Neurol., 2000, 422, 396–401<396::AID-CNE6>3.0.CO;2-R[Crossref]
  • [25] Stranahan AM., Mattson MP., Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer’s disease, Neural. Plast., 2010, [WoS]
  • [26] Derflinger S., Sorg C., Gaser C., Myers N., Arsic M., Kurz A., et al., Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized, J. Alzheimers. Dis., 2011, 25, 347–357. [WoS]
  • [27] Cavanagh JB., Corpora-amylacea and the family of polyglucosan diseases. Brain. Res. Brain. Res. Rev., 1999, 29, 265–295[Crossref]
  • [28] Kimura T., Takamatsu J., Miyata T., Miyakawa T., Horiuchi S., Localization of identified advanced glycation end-product structures, N epsilon(carboxymethyl)lysine and pentosidine, in age-related inclusions in human brains, Pathol. Int., 1998, 48, 575–579[Crossref]
  • [29] Singhrao SK., Neal JW., Piddlesden SJ., Newman GR., New immunocytochemical evidence for a neuronal/oligodendroglial origin for corpora amylacea, Neuropathol. Appl. Neurobiol., 1994, 20, 66–73[Crossref]
  • [30] Singhrao SK., Morgan BP., Neal JW., Newman GR., A functional role for corpora amylacea based on evidence from complement studies, Neurodegeneration., 1995, 4, 335–345[Crossref]
  • [31] Buervenich S., Olson L., Galter D., Nestin-like immunoreactivity of corpora amylacea in aged human brain, Brain. Res. Mol. Brain. Res., 2001, 94, 204–208[Crossref]
  • [32] Double KL., Dedov VN., Fedorow H., Kettle E., Halliday GM., Garner B., et al., The comparative biology of neuromelanin and lipofuscin in the human brain, Cell. Mol. Life. Sci., 2008, 65, 1669–1682[Crossref][WoS]
  • [33] Sulzer D., Mosharov E., Talloczy Z., Zucca FA., Simon JD., Zecca L., Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease, J. Neurochem., 2008, 106, 24–36[Crossref][WoS]
  • [34] Boellaard JW., Harzer K., Schlote W., Variations of the ultrastructure of neuronal lipofuscin during childhood and adolescence in the human Ammon’s horn, Ultrastruct. Pathol., 2006, 30, 387–391[Crossref]
  • [35] Russ J.C., Image analysis of food microstructure, 1st ed., CRC Press Taylor &Francis Group, Boca Raton Florida, 2004
  • [36] Kališnik M., Blejec A., Pajer Z., Majhenc J., Metric characteristics of various methods for numerical density estimation in transmission light microscopy - a computer simulation, 2001, Image. Anal. Stereol. 2001, 20, 15–25[Crossref]
  • [37] Leel-Ossy L., New data on the ultrastructure of the corpus amylaceum (polyglucosan body), Pathol. Oncol. Res., 2001, 7, 145–150[Crossref]
  • [38] Nishimura A., Sawada S., Ushiyama I., Yamamoto Y., Nakagawa T., Tanegashima A., et al., Lectinhistochemical detection of degenerative glycoconjugate deposits in human brain, Forensic. Sci. Int., 2000, 113 265–269[Crossref]
  • [39] Abel TJ., Hebb AO., Keene CD., Born DE., Silbergeld DL., Parahippocampal corpora amylacea: case report, Neurosurgery., 2010, 66, E1206–1207[WoS][Crossref]
  • [40] Selmaj K., Pawłowska Z., Walczak A., Koziołkiewicz W., Raine CS., Cierniewski CS., Corpora amylacea from multiple sclerosis brain tissue consists of aggregated neuronal cells. Acta. Biochim. Pol., 2008, 55, 43–49.
  • [41] Hoyaux D., Decaestecker C., Heizmann CW., Vogl T., Schäfer BW., Salmon I., et al., S100 proteins in Corpora amylacea from normal human brain, Brain. Res., 2000, 867, 280–288[Crossref]
  • [42] Takahashi K., Iwata K., Nakamura H., Intra-axonal corpora amylacea in the CNS, Acta. Neuropathol., 1977, 37, 165–167[Crossref]
  • [43] Nishio S., Morioka T., Kawamura T., Fukui K., Nonaka H., Matsushima M., Corpora amylacea replace the hippocampal pyramidal cell layer in a patient with temporal lobe epilepsy, Epilepsia., 2001, 42, 960–962[Crossref]
  • [44] Gray DA., Woulfe J., Lipofuscin and aging: a matter of toxic waste, Sci. Aging. Knowledge. Environ., 2005, [Crossref]
  • [45] Riga D., Riga S., Halalau F., Schneider F., Brain lipopigment accumulation in normal and pathological aging, Ann. N. Y. Acad. Sci., 2006, 1067, 158–163[Crossref]
  • [46] Nakano M., Oenzil F., Mizuno T., Gotoh S., Agerelated changes in the lipofuscin accumulation of brain and heart, Gerontology., 1995, 41, 69–79[Crossref]
  • [47] Shimada A., Keino H., Kawamura N., Chiba Y., Hosokawa M., Limbic structures are prone to agerelated impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration, Neuropathol. Appl. Neurobiol., 2008, 34, 33–51 [WoS]
  • [48] Kimura T., Fujise N., Ono T., Shono M., Yuzuriha T., Katsuragi S., et al., Identification of an aging-related spherical inclusion in the human brain, Pathol. Int., 2002, 52, 636–642[Crossref]
  • [49] Raz N., Rodrigue KM., Differential aging of the brain: patterns, cognitive correlates and modifiers, Neurosci. Biobehav. Rev., 2006, 30, 730–748[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.