Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 8 | 3 | 287-296
Tytuł artykułu

Predictors of diabetic nephropathy

Treść / Zawartość
Warianty tytułu
Języki publikacji
Diabetic nephropathy (DN) is a leading cause of morbidity and mortality in diabetic patients representing a huge health and economic burden. Alarming recent data described diabetes as an unprecedented worldwide epidemic, with a prevalence of ∼6.4% of the world population in 2010, while the prevalence of CKD among diabetics was approximately 40%. With a clinical field hungry for novel markers predicting DN, several clinical and laboratory markers were identified lately with the promise of reliable DN prediction. Among those are age, gender, hypertension, smoking, sex hormones and anemia. In addition, eccentric left ventricular geometric patterns, detected by echocardiography, and renal hypertrophy, revealed by ultrasonography, are promising new markers predicting DN development. Serum and urinary markers are still invaluable elements, including serum uric acid, microalbuminuria, macroalbuminuria, urinary liver-type fatty acid-binding protein (u-LFABP), and urinary nephrin. Moreover, studies have illustrated a tight relationship between obstructive sleep apnea and the development of DN. The purpose of this review is to present the latest advances in identifying promising predictors to DN, which will help guide the future research questions in this field. Aiming at limiting this paramount threat, further efforts are necessary to identify and control independent modifiable risk factors, while developing an integrative algorithm for utilization in DN future screening programs.

Opis fizyczny
  • Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, PA 19107, USA
  • [1] Foley, R.N. and A.J. Collins, The growing economic burden of diabetic kidney disease. Curr Diab Rep, 2009. 9(6): p. 460–465[Crossref]
  • [2] Farag, Y.M. and M.R. Gaballa, Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant, 2011. 26(1): p. 28–35[Crossref]
  • [3] Shaw, J.E., R.A. Sicree, and P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 2010. 87(1): p. 4–14
  • [4] Plantinga, L.C., et al., Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol, 2010. 5(4): p. 673–682[Crossref]
  • [5] Abougalambou, S.S.I., et al., Prevalence of Vascular Complications among Type 2 Diabetes Mellitus Outpatients at Teaching Hospital in Malaysia. J Diabet Metabol, 2011. 2:115[Crossref]
  • [6] Singh, D.K., P. Winocour, and K. Farrington, Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol, 2010
  • [7] Fioretto, P., et al., An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis, 1992. 20(6): p. 549–558 [Crossref]
  • [8] Adler, S., Diabetic nephropathy: Linking histology, cell biology, and genetics. Kidney Int, 2004. 66(5): p. 2095–2106[Crossref]
  • [9] Alexander, M.P., et al., Kidney pathological changes in metabolic syndrome: a cross-sectional study. Am J Kidney Dis, 2009. 53(5): p. 751–759.[Crossref]
  • [10] Farag, Y.M., Metabolic syndrome and the nonneoplastic kidney. Adv Anat Pathol, 2011. 18(2): p. 173; author reply 174[Crossref]
  • [11] Nosadini, R., et al., Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes, 2000. 49(3): p. 476–484
  • [12] Keck, M., et al., Hormonal status affects the progression of STZ-induced diabetes and diabetic renal damage in the VCD mouse model of menopause. Am J Physiol Renal Physiol, 2007. 293(1): p. F193–199[Crossref]
  • [13] Mankhey, R.W., F. Bhatti, and C. Maric, 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol, 2005. 288(2): p. F399–405[Crossref]
  • [14] Reckelhoff, J.F., et al., Testosterone supplementation in aging men and women: possible impact on cardiovascular-renal disease. Am J Physiol Renal Physiol, 2005. 289(5): p. F941–948[Crossref]
  • [15] Mollsten, A., et al., Cumulative risk, age at onset, and sex-specific differences for developing endstage renal disease in young patients with type 1 diabetes: a nationwide population-based cohort study. Diabetes, 2010. 59(7): p. 1803–1808[Crossref]
  • [16] Morimoto, A., et al., Is pubertal onset a risk factor for blindness and renal replacement therapy in childhood-onset type 1 diabetes in Japan? Diabetes Care, 2007. 30(9): p. 2338–2340[Crossref]
  • [17] Harvey, J.N., The influence of sex and puberty on the progression of diabetic nephropathy and retinopathy. Diabetologia, 2011. 54(8): p. 1943–1945[Crossref]
  • [18] Finne, P., et al., Incidence of end-stage renal disease in patients with type 1 diabetes. JAMA, 2005. 294(14): p. 1782–1787[Crossref]
  • [19] Raile, K., et al., Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care, 2007. 30(10): p. 2523–2528[Crossref]
  • [20] Svensson, M., et al., Age at onset of childhoodonset type 1 diabetes and the development of end-stage renal disease: a nationwide population-based study. Diabetes Care, 2006. 29(3): p. 538–542[Crossref]
  • [21] Dahlquist, G. and S. Rudberg, The prevalence of microalbuminuria in diabetic children and adolescents and its relation to puberty. Acta Paediatr Scand, 1987. 76(5): p. 795–800[Crossref]
  • [22] Olsen, B.S., et al., The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type 1 diabetes. J Diabetes Complications, 2004. 18(3): p. 160–164[Crossref]
  • [23] Yacoub, R., et al., Association between smoking and chronic kidney disease: a case control study. BMC Public Health, 2010. 10: p. 731.[Crossref]
  • [24] Sawicki, P.T., et al., Smoking is associated with progression of diabetic nephropathy. Diabetes Care, 1994. 17(2): p. 126–131[Crossref]
  • [25] Rossing, P., P. Hougaard, and H.H. Parving, Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care, 2002. 25(5): p. 859–864[Crossref]
  • [26] Stegmayr, B.G., A study of patients with diabetes mellitus (type 1) and end-stage renal failure: tobacco usage may increase risk of nephropathy and death. J Intern Med, 1990. 228(2): p. 121–124[Crossref]
  • [27] Chuahirun, T. and D.E. Wesson, Cigarette smoking predicts faster progression of type 2 established diabetic nephropathy despite ACE inhibition. Am J Kidney Dis, 2002. 39(2): p. 376–382[Crossref]
  • [28] Orth, S.R., Smoking-a renal risk factor. Nephron, 2000. 86(1): p. 12–26[Crossref]
  • [29] Jaimes, E.A., R.X. Tian, and L. Raij, Nicotine: the link between cigarette smoking and the progression of renal injury? Am J Physiol Heart Circ Physiol, 2007. 292(1): p. H76–82[Crossref]
  • [30] Marangon, K., et al., Diet, antioxidant status, and smoking habits in French men. Am J Clin Nutr, 1998. 67(2): p. 231–239
  • [31] Cross, C.E., A. van der Vliet, and J.P. Eiserich, Cigarette smokers and oxidant stress: a continuing mystery. Am J Clin Nutr, 1998. 67(2): p. 184–185
  • [32] Hu, Y., et al., Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr, 2006. 84(1): p. 70–76; quiz 266–267
  • [33] Chabrashvili, T., et al., Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension, 2002. 39(2): p. 269–274[Crossref]
  • [34] Gorin, Y., et al., Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem, 2005. 280(47): p. 39616–39626[Crossref]
  • [35] Hua, P., et al., Nicotine worsens the severity of nephropathy in diabetic mice: implications for the progression of kidney disease in smokers. Am J Physiol Renal Physiol, 2010. 299(4): p. F732–739[Crossref]
  • [36] Sharma, K., P. McCue, and S.R. Dunn, Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol, 2003. 284(6): p. F1138–1144
  • [37] Waugh, N.R., et al., Mortality in a cohort of diabetic patients. Causes and relative risks. Diabetologia, 1989. 32(2): p. 103–104[Crossref]
  • [38] Sturrock, N.D., et al., Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet Med, 2000. 17(5): p. 360–364[Crossref]
  • [39] Epstein, M. and J.R. Sowers, Diabetes mellitus and hypertension. Hypertension, 1992. 19(5): p. 403–418[Crossref]
  • [40] Farmer, C.K., et al., Progression of diabetic nephropathy-is diurnal blood pressure rhythm as important as absolute blood pressure level? Nephrol Dial Transplant, 1998. 13(3): p. 635–639[Crossref]
  • [41] Verdecchia, P., et al., Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation, 1993. 88(3): p. 986–992[Crossref]
  • [42] Borch-Johnsen, K., P.K. Andersen, and T. Deckert, The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1985. 28(8): p. 590–596[Crossref]
  • [43] Hansen, H.P., et al., Circadian rhythm of arterial blood pressure and albuminuria in diabetic nephropathy. Kidney Int, 1996. 50(2): p. 579–585[Crossref]
  • [44] Lurbe, E., et al., Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med, 2002. 347(11): p. 797–805[Crossref]
  • [45] Lurbe, A., et al., Altered blood pressure during sleep in normotensive subjects with type I diabetes. Hypertension, 1993. 21(2): p. 227–235[Crossref]
  • [46] Moore, W.V., et al., Ambulatory blood pressure in type I diabetes mellitus. Comparison to presence of incipient nephropathy in adolescents and young adults. Diabetes, 1992. 41(9): p. 1035–1041[Crossref]
  • [47] Lafferty, A.R., G.A. Werther, and C.F. Clarke, Ambulatory blood pressure, microalbuminuria, and autonomic neuropathy in adolescents with type 1 diabetes. Diabetes Care, 2000. 23(4): p. 533–538[Crossref]
  • [48] Felicio, J.S., et al., Nocturnal blood pressure fall as predictor of diabetic nephropathy in hypertensive patients with type 2 diabetes. Cardiovasc Diabetol, 2010. 9: p. 36[Crossref]
  • [49] Magri, C.J., et al., Factors associated with diabetic nephropathy in subjects with proliferative retinopathy. Int Urol Nephrol, 2011
  • [50] Ip, M.S., et al., Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med, 2002. 165(5): p. 670–676[Crossref]
  • [51] Ozol, D., et al., Influence of snoring on microalbuminuria in diabetic patients. Sleep Breath, 2010
  • [52] Netzer, N.C., et al., Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med, 1999. 131(7): p. 485–491[Crossref]
  • [53] Hovind, P., et al., Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes, 2009. 58(7): p. 1668–1671[Crossref]
  • [54] Kosugi, T., et al., Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol, 2009. 297(2): p. F481–488[Crossref]
  • [55] Kanakamani, J., et al., Prevalence of microalbuminuria among patients with type 2 diabetes mellitus-a hospital-based study from north India. Diabetes Technol Ther, 2010. 12(2): p. 161–166[Crossref]
  • [56] Hoefield, R.A., et al., The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrol Dial Transplant, 2010
  • [57] Rossing, P., et al., Monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy. Diabetes Care, 2006. 29(5): p. 1024–1030[Crossref]
  • [58] Phillips, A.O. and R. Steadman, Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol, 2002. 17(1): p. 247–252
  • [59] Kanauchi, M., H. Nishioka, and T. Hashimoto, Oxidative DNA damage and tubulointerstitial injury in diabetic nephropathy. Nephron, 2002. 91(2): p. 327–329[Crossref]
  • [60] Nielsen, S.E., et al., Urinary liver-type fatty acidbinding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care, 2010. 33(6): p. 1320–1324[Crossref]
  • [61] Kamijo-Ikemori, A., et al., Clinical Significance of Urinary Liver-Type Fatty Acid Binding Protein in Diabetic Nephropathy of Type 2 Diabetic Patients. Diabetes Care, 2011
  • [62] Nielsen, S.E., et al., Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int, 2011. 79(10): p. 1113–1118[Crossref]
  • [63] Aaltonen, P., et al., Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest, 2001. 81(9): p. 1185–1190[Crossref]
  • [64] Luimula, P., et al., Nephrin in experimental glomerular disease. Kidney Int, 2000. 58(4): p. 1461–1468[Crossref]
  • [65] Qipo, A., H.W. Cohen, and B. Jim, 256 Urinary Nephrin as an Early Biomarker of Diabetic Nephropathy. American journal of kidney diseases: the official journal of the National Kidney Foundation, 2011. 57(4): p. B80[Crossref]
  • [66] Rutter, M.K., et al., Increased left ventricular mass index and nocturnal systolic blood pressure in patients with Type 2 diabetes mellitus and microalbuminuria. Diabet Med, 2000. 17(4): p. 321–325[Crossref]
  • [67] Suzuki, K., et al., Left ventricular mass index increases in proportion to the progression of diabetic nephropathy in Type 2 diabetic patients. Diabetes Res Clin Pract, 2001. 54(3): p. 173–180[Crossref]
  • [68] Moon, S.J., et al., The effect of anemia and left ventricular geometric patterns on renal disease progression in type 2 diabetic nephropathy. J Nephrol, 2011. 24(1): p. 50–59[Crossref]
  • [69] Rigalleau, V., et al., Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC Nephrol, 2010. 11: p. 3[Crossref]
  • [70] Zerbini, G., et al., Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes, 2006. 55(9): p. 2620–2625[Crossref]
  • [71] Ablett, M.J., et al., How reliable are ultrasound measurements of renal length in adults? Br J Radiol, 1995. 68(814): p. 1087–1089
  • [72] Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis. 2009 Mar;16(2):94–100
  • [73] Keithi-Reddy SR, Addabbo F, Patel TV, Mittal BV, Goligorsky MS, Singh AK. Association of anemia and erythropoiesis stimulating agents with inflammatory biomarkers in chronic kidney disease. Kidney Int. 2008
  • [74] Inrig JK, Bryskin SK, Patel UD, Arcasoy M, Szczech LA. Association between high-dose erythropoiesis-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors. BMC Nephrol. 2011 Dec 12;12:67[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.