Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 5 | 5 | 527-534
Tytuł artykułu

Early diagnosis of acute kidney injury

Treść / Zawartość
Warianty tytułu
Języki publikacji
There is a considerable lack of data concerning the diagnostic testing for kidney damage after surgical procedures. In this situation the most important variables should be examined with respect to their clinical informative value, the costs associated with their analysis, and their potential use in routine diagnostic testing. Forty patients in the surgical intensive care unit (ICU) with acute kidney injury (AKI) that developed during their stay of 13–18 (median, 16) days in the ICU were examined daily during their entire ICU admission. The bulk of the laboratory research consisted of the measurement of creatinine, urea, and sodium, as well as clearances rates and diuresis. Various tests for diagnosing regional renal damage (enzymes and proteins) were also carried out. The included photometry, nephelometric analysis, and ELISA (enzyme-linked immunosorbent assay). Five days before an AKI became evident, pathologic levels of urinary α1-microglobulin (tubular parameter) could already be confirmed. Serum creatinine values or creatinine clearance indicated the presence of disease only 1 day before the AKI was seen. Our results show that determination of α1-microglobulin and immunoglobulin G (glomerular parameter) levels, in addition to the level of urea in serum, be recommended for patients in surgical intensive care units who are at risk for AKI. Use of these procedures can achieve early recognition and sufficiently precise localization of renal damage.
Słowa kluczowe

Opis fizyczny
  • Department of Anesthesiology, Intensive Care Medicine, Emergency medicine and pain therapy, Hospital Wittlich, Wittlich, Germany,
  • Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
  • Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
  • Staff Anesthesiologist, Department of Anesthesiology and Intensive Care Medicine, Justus-Liebig-University Giessen, Giessen, Germany
  • [1] Byrick R.J., Rose D.K.: Pathophysiology and prevention of acute renal failure: The role of the anaesthesist, Can. J. Anaesth. 1990, 37,457–467[Crossref]
  • [2] Sural S., Sharma R.K., Singhal M., Sharma A.P., Kher V., Arora P., Gupta A., Gulati S.: Etiology, prognosis, and outcome of post-operative acute renal failure, Ren. Fail. 2000, 1,87–97
  • [3] Pickering J.W., Endre Z.H.: Secondary prevention of acute kidney injury, Curr. Opin. Crit. Care 2009, 15(6),488–497[Crossref]
  • [4] Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P., Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group, Crit. Care 2004, 8(4), 204–212[Crossref]
  • [5] Kellum J.A., Acute kidney injury, Crit. Care Med. 2008, 36(4),141–145[Crossref]
  • [6] Kellen M., Aronson S., Roizen M., Barnard J., Thisted R., Predictive and Diagnostic Tests of Renal Failure: A Review, Anesth. Analg. 1994, 78,134–142[Crossref]
  • [7] Dati F., Lammers M., Immunochemical Methods for Determination of Urinary Proteins in Kidney Disease, J. Fed. Clin. Chem. 1989, 1,68–77
  • [8] Simane Z.J., N-Acetyl-b-D-Glucosaminidase; in Jung K, Mattenheimer H, Burchardt U (eds), Urinary Enzymes in Clinical and Experimental Medicine, Berlin, Springer, 1992, pp118–124
  • [9] Scherberich J.E., Aminopeptidase A (Angiotensinase A), in Jung K, Mattenheimer H, Burchardt U (eds), Urinary Enzymes in Clinincal and Experimental Medicine. Berlin, Springer, 1992, pp 116–112
  • [10] Szczech L.A., The development of urinary biomarkers for kidney disease is the search for our renal troponin, J Am. Soc. Nephrol. 2009, 20(8),1656–1657[Crossref][WoS]
  • [11] Dixon B.S., Anderson R.J., Nonoliguric acute renal failure, Am. J. Kidney Dis. 1985, 6,71–80 [Crossref]
  • [12] Hartl W.H., Jauch K.W., Post-aggression metabolism: attempt at a status determination, Infusionsther. Transfusionsmed. 1994, 2,30–40
  • [13] Lynn K.L., Marshall R.D., Excretion of Tamm-Horsfall glycoprotein in renal disease, Clin. Nephrol. 1984, 22,253–257
  • [14] Itoh Y., Enomoto H., Takagi K., Kawai, T., Clinical usefulness of serum alpha 1-microglobulin as a sensitive indicator for renal insufficiency, Nephron 1983, 33,69–70
  • [15] Wedeen R.P., Udasin I., Fiedler N., Urinary biomarkers as indicators of renal disease, Ren. Fail. 1999, 21,241–249[Crossref]
  • [16] Wolf G., Thaiss F., Scherberich J.E., Schoeppe W., Stahl R.A., Glomerular angiotensinase A in the rat: increase of enzyme activity following renal ablation, Kidney Int. 1990, 38,862–868[Crossref]
  • [17] Hotta O., Sugai H., Kitamura H., Yusa N., Taguma Y., Predictive value of urinary microcholesterol (mCHO) levels in patients with progressive glomerular disease. Kidney Int. 2004, 66,2374–2381[Crossref]
  • [18] Higuchi H., Adachi Y., Renal function in surgical patients after administration of low-flow sevoflurane and amikacin, J. Anesth. 2002, 16,17–22[Crossref]
  • [19] Scherberich J.E., Wolf G., Albers C., Nowack A., Stuckhardt C., Schoeppe W., Glomerular and tubular membrane antigens reflecting cellular adaptation in human renal failure, Kidney Int. Suppl. 1989, 27,38–51
  • [20] Mueller P.W., MacNeil M.L., Steinberg K.K., Stabilization of alanine aminopeptidase, gammaglutamyltransferase and N-acetyl-beta-D-glucosaminidase in normal urine, Arch. Environ. Contam. Toxicol. 1986, 15,343–358[Crossref]
  • [21] Mattenheimer H., Frolke W., Grotsch H., Mahrun D., Simane Z.J., Recommendation for the measurement of “alanine aminopeptidase” in urine, J. Clin. Chem. Clin. Biochem. 1988, 26,635–644
  • [22] Dehne M.G., Mühling J., Papke G., Nopens H., Kuntzsch U., Hempelmann G., Unrecognized renal damage in critically ill patients, Ren. Fail. 1999, 21,695–706[Crossref]
  • [23] Teppo A. M., von Willebrand E., Honkanen E., Ahonen J., Gronhagen-Riska C., Soluble intercellular adhesion molecule-1 (sICAM-1) after kidney transplantation: the origin and role of urinary sICAM-1? Transplantation 2001, 71,1113–1119[Crossref]
  • [24] Gauer S., Yao J., Schoecklmann H.O., Sterzel R.B., Adhesion molecules in the glomerular mesangium, Kidney Int. 1997, 51,1447–1453[Crossref]
  • [25] Gobé Glenda C., Willgoss D., Hogg N., Schoch E., Endre Z., Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury, Kidney Int. 1999, 56,1299–1304[Crossref]
  • [26] Rothlein R., Kennedy C., Czajkowski M., Barton R.W., Generation and characterization of an antiidiotypic antibody specific for intercellular adhesion molecule-1, Int. Arch. Allergy Immunol. 1993, 100,121–127[Crossref]
  • [27] Bechtel U., Scheuer R., Landgraf R., Konig A., Feucht H.E., Assessment of soluble adhesion molecules (sICAM-1, sVCAM-1, sELAM-1) and complement cleavage products (sC4d, sC5b-9) in urine. Clinical monitoring of renal allograft recipients, Transplantation 1994, 58,905–911[Crossref]
  • [28] Gearing A.J.H., Hemingway I., Pigott R., Hughes J., Rees A.J., Cashman S.J., Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: Pathological significance, Ann. N. Y. Acad. Sci. 1992, 667,324–331[Crossref]
  • [29] Bevilacqua M.P., Stengelin S., Gimbrone M.A. Jr, Seed B., Endothelial Leukocyte Adhesion Molecule 1: An Inducible Receptor for Neutrophils Related to Complement Regulatory Proteins and Lectins, Science 1989, 243,1160–1164[Crossref]
  • [30] Kelly K. J., Williams W.W., Colvin R.B., Meehan S.M., Springer T.A., Guiterrez-Ramos J.C., Bonventre J.V., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J. Clin. Invest. 1996, 97,1056–1062[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.