Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 5 | 1 | 123-131
Tytuł artykułu

In-vivo effects of nociceptin and its structural analogue [Orn9] nociceptin on the antioxidant status of rat blood and liver after carrageenan-induced paw inflammation

Treść / Zawartość
Warianty tytułu
Języki publikacji
The production of reactive oxygen species (ROS) in cells is well balanced with their elimination by the antioxidant defence system. This balance is essential for maintenance of physiological conditions, and its disturbance (oxidative stress) has been suggested as a potential pathogenic mechanism in a variety of diseases, accompanied by inflammation. In this study, the in-vivo effects of nociceptin (N/OFQ(1–13)NH2) and its structure analogue [Orn9]N/OFQ(1–13)NH2 were studied on markers of oxidative stress in erythrocytes and liver of rats 4 hours after subplantar administration of carrageenan (CG) (1%, 100 µl) in the right hind paw. A considerable inflammatory oedema of the paw was observed. CG did not change blood haemoglobin content, hematocrit value, glutathione level and antioxidant enzyme activities in the erythrocytes, but there was an increase in lipid peroxidation. In liver, CG-induced imbalance was manifested by an increase in lipid peroxidation and a decrease in glutathione level. Both peptides (20 µg, i.p.), when administered alone, had no effect on all parameters tested. When either [Orn9]N/OFQ(1–13)NH2 or N/OFQ(1–13)NH2 was injected simultaneously with CG or 15 minutes before it, they did not affect the CG-induced changes in the antioxidant status of the erythrocytes and liver. Our results suggest that the peptides tested did not play a role in the free radical processes that accompany CG-induced paw inflammation.

Opis fizyczny
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G.Bonchev St., 1113, Sofia, Bulgaria
  • [1] Calo G., Guerrini R., Rizzi A., Salvadori S., Regoli D., Pharmacology of nociceptin and its receptor: a novel therapeutic target (review), Brain J. Pharmacol., 2000, 129, 1261–1283[Crossref]
  • [2] Chiou L.C., Liao Y.Y., Fan P.C., Kuo P.H., Wang C.H., Riemer C., Prinssen E.P., Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications, Curr. Drug Targets, 2007, 8(1), 117–135[Crossref]
  • [3] Wei Y., Ouyang D., Liu Y., Chang Z., Tang J., Ding J., Peripheral tissue distribution of orphanin FQ precusor mRNA in stroke-prone spontaneously hypertensive rats, Clin. Med. Sci. J., 1999, 14(2), 67–70
  • [4] Boom A., Mollereau C., Meunier J.C., Vassart G., Parmentier M., Vanderhaeghen J.J., Schiffmann S.N., Distribution of the nociceptin and nocistatin precursor transcript in the mouse central nervous system, Neuroscience, 1999, 91(3), 991–1007[Crossref]
  • [5] Doggrell S.A., Cardiovascular and renal effects of nociceptin/orphanin FQ: a new mediator to target? Curr. Opin. Investig. Drugs, 2007, 8(9), 742–749
  • [6] Fiset M.E., Gilbert C., Poubelle P.E., Pouliot M., Human neutrophils as a source of nociceptin: a novel link between pain and inflammation, Biochemistry, 2003, 42(35), 10498–10505[Crossref]
  • [7] Williams J.P., Thompson J.P., Mc Donald J., Barnes T.A., Cote T., Rowbotham D.J., Lambert D.G., Human peripheral blood mononuclear cells express nociceptin/orphanin FQ, but not mu, delta, or kappa opioid receptors, Anesth. Analg., 2007, 105(4), 998–1005[Crossref]
  • [8] Williams J.P., Thompson J.P., Rowbotham D.L., Lambert D.G., Human peripheral blood mononuclear cells produce pre-pro-nociceptin/orphanin FQ mRNA, Anesth. Analg., 2008, 106(3), 865–866[Crossref]
  • [9] Williams J.P., Thompson J.P., Young S.P., Gold S.J., McDonald J., Rowbotham D.J., Lambert D.J., Nociceptin and urotensin-II concentrations in critically ill patients with sepsis, Br. J. Anaesth., 2008, 100(6), 810–814[Crossref]
  • [10] Hantos M.B., Szalay F., Lakatos P.L., Hegedus D., Firneisz G., Reiczigel J., et al., Elevated plasma nociceptin level in patients with Wilson disease, Brain Res. Bull., 2002, 58, 311–313[Crossref]
  • [11] Ko M.H., Kim Y.H., Woo R.S., Kim K.W., Quantitive analysis of nociceptin in blood of patients with acute and chronic pain, Neuroreport, 2002, 13, 1361–1363
  • [12] Szalay F., Hantos M.B., Horvath A., Lakatos P.L., Folhoffer A., Dunkel K., et al., Increased nociceptin/orphanin FQ plasma levels in hepatocellular carcinoma, World J. Gastroenterol., 2004, 10(1), 42–45
  • [13] Horvath A., Folhoffer A., Lakatos P.L., Halász J., Illyés G., Schaff Z., et al., Rising plasma nociceptin level during development of HCC: A case report, World J. Gastroenterol., 2004, 10(1), 152–154
  • [14] Mabuchi T., Matsumura S., Okuda-Ashitaka E., Kitano T., Kojima H., Nagano T., et al., Attenuation of neuropathic pain by the nociceptin/orphanin FQ antagonist JTC-801 is mediated by inhibition of nitric oxide production, Eur. J. Neurosci., 2003, 17(7), 1384–1392[Crossref]
  • [15] Kulkarni M., Armstead W.M., Superoxide generation links nociceptin/orphanin FQ (NOC/oFQ) release to impaired N-methyl-D-aspartate cerebrovasodilation after brain injury, Stroke, 2000, 31, 1990–1996 [Crossref]
  • [16] Armstead W.M., Role of altered cyclooxygenase metabolism in impaired cerebrovasodilation to nociceptin/orphanin FQ following brain injury, Brain Res. Bull., 2000, 53, 807–812[Crossref]
  • [17] Armstead W.M., NOC/oFQ PKC-dependent superoxide generation contributes to hypoxicischemic impairment of NMDA cerebrovasodilation, Am. J. Physiol. Heart Circ. Physiol., 2000, 279, H2678–H2684
  • [18] Chen Y., Sommer C., Nociceptin and its receptor in rat dorsal root ganglion neurons in neuropathic and inflammatory pain models: implications on pain processing, J. Peripher. Nerv. Syst., 2006, 11(3), 232–240[Crossref]
  • [19] Rosenberger J., Petrovics G., Buzas B., Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB, J. Neurochem., 2001, 79(1), 35–44[Crossref]
  • [20] Naydenova E.D., Zhivkova V., Zamfirova R., Vezenkov L.T., Dobrinova Y.G, Mateeva P.I., Synthesis and biological activity of nociceptin/orphanin FQ(1–13)NH2 analogues modified in 9 and/or 13 position, Bioorg. & Med. Chem. Lett., 2006, 16, 4071–4074[Crossref]
  • [21] Helyes Z, Nemeth J, Pinter E, Szolesanyi J. (1997) Inhibition by N/OFQ of neurogenic inflammation and the release of SP and CGRP from sensory nerve terminals. Br. J. Pharmacol., 121, 613–615[Crossref]
  • [22] Lowry O.H., Rosenbrough N.J., Farr A.L., Randal R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–278
  • [23] Gilbert N.S., Strump D.D., Roth E.F., A method to correct errors caused by generation of interfering compounds during erythrocyte lipid peroxidation, Anal. Biochem., 1984, 137, 282–286[Crossref]
  • [24] Hunter F., Gebinski J., Hoffstein.P, Weinstein J., Scott A., Swelling and lysis of rat liver mitochondria by ferrous ions, J. Biol. Chem., 1963, 238, 828–835
  • [25] Tietze F., Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues, Anal. Biochem., 1969, 27, 502–522[Crossref]
  • [26] Gunzler W.A., Vergin H., Muller I., Flohe L., Glutathion peroxidase. VI. Die reaction der glutathion peroxidase mit Verschieden hydroperoxiden, Hoppe-Seyler’s Z Physiol. Chem., 1972, 353, 1001–1004
  • [27] Pinto R.E., Bartly W., The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates, Biochem. J., 1969, 112, 109–115
  • [28] Cartier P., Leroux J.P., Marchand J.Cl., Techniques de dosage des enzymes glycocytiques tissulaires, Ann. Biol. Clin., 1967, 25, 109–136
  • [29] Beauchamp C., Fridovich I., Superoxide dismutase: improved assays and assay applicable to acrylamide gels, Anal. Biochem., 1971, 44, 276–287[Crossref]
  • [30] Aebi H., Katalase, In: Bergmeyer H.U. (Ed.), Methoden der Enzymatischen Analyze, Academie Press, Berlin, 1970
  • [31] Zamfirova R, Tzvetanova E, Alexandrova A, Petrov L, Mateeva P, Pavlova A, Kirkova M, Todorov S., In-vivo effects of nociceptin(1–13)NH2 and its structural analogue [Orn9]nociceptin(1–13)NH2 on carrageenan-induced inflammation: rat-paw oedema and antioxidant status, Cent. Eur. J. Biol., 2009, 4(2), 170–178[Crossref]
  • [32] Muntane J., Puig-Parellada P., Fernandez Y., Mitjavila S., Mitjavila M.T., Antioxidant defenses and its modulation by iron in carrageenan-induced inflammation in rats, Clin. Chim. Acta, 1993, 214(2), 185–193[Crossref]
  • [33] Cuzzocrea S., Mazzon E., Dugo L., Serraino I., Ciccolo A., Centorrino Tet al., Protective effects of n-acetylcysteine on lung injury and red blood cell modification induced by carrageenan in the rat, FASEB J., 2001, 15, 1187–1200[Crossref]
  • [34] Bilici D., Akpinar E., Kiziltunc A., Protective effect of melatonin in carrageenan-induced acute local inflammation, Pharmacol. Res., 2002, 46(2), 133–139[Crossref]
  • [35] Chou T.C., Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia, Br. J. Pharmacol., 2003, 139, 1146–1152[Crossref]
  • [36] Rossi A., Serraino I., Dugo P., Di Paola R., Mondello L., Genovese T., et al., Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation, Free Radic. Res., 2003, 37(8), 891–900[Crossref]
  • [37] Lu T.C., Ko Y.Z., Huang H.W., Hung Y.C., Lin Y.C., Peng W.H., Analgesic and anti-inflammatory activities of aqueous extract from Glycine tomentella root in mice, J. Ethnopharmacol., 2007, 113(1), 142–148[Crossref]
  • [38] Rubbo H., Radi R., Trujillo M., Telleri R., Kalyanaraman B., Barnes S., et al., Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives, J. Biol. Chem., 1994, 269, 26066–26075
  • [39] Tracey W.R., Nakane M., Kuk J., Budzik G., Klinghofer V., Harris R., Carter G., The nitric oxide synthase inhibitor, L-NG-monomethylarginine, reduces carrageenan-induced pleurisy in the rat, J. Pharmacol. Exp. Ther., 1995, 273, 1295–1299
  • [40] Salvemini D., Wang Z.Q., Wyatt P., Bourdon D.M., Marino M.H., Manning P.T., Currie M.G., Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation, Br. J. Pharmacol., 1996, 118, 829–838
  • [41] Radi R., Beckman J.S., Bush K.M., Freeman B.A., Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys., 1991, 288, 481–487[Crossref]
  • [42] Peskar B.M, Trautmann M., Nowak P., Peskar, B.A., Release of 15-hydroxy-5,8,11,13-icosatetraenoic acid and cysteinyl-leukotrienes in carrageenaninduced inflammation: effect of non-steroidal antiinflammatory drugs, Agents Actions, 1991, 33(3–4), 240–246[Crossref]
  • [43] Da Motta J.I., Cunha F.Q., Vargaftig B.B., Ferreira S.H., Drug modulation of antigen-induced paw oedema in guinea-pigs: effects of lipopolysaccharide, tumour necrosis factor and leucocyte depletion, Br. J. Pharmacol., 1994, 112, 111–116
  • [44] Wei X.Q., Charles I.G., Smith A., Ure J., Feng G.J., Huang F.P., et al., Altered immune responses in mice lacking inducible nitric oxide synthase, Nature (London), 1995, 375, 408–411[Crossref]
  • [45] Salvemini D., Wang Z.Q., Bourdon D.M., Stern M.K., Currie M.G., Manning P.T., Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema, Eur. J. Pharmacol., 1996, 303, 217–220[Crossref]
  • [46] Cuzzocrea S., Zingarelli B., Gilard E., Hake P., Salzman A.L., Szabo’ C., Protective effect of melatonin in carrageenan-induced models of local inflammation, J. Pineal Res., 1997, 23, 106–116[Crossref]
  • [47] Cuzzocrea S., Caputi A.P., Zingarelli B., Peroxynitrite-mediated DNA strand breakage activates poly (ADP-ribose) synthetase and causes cellular energy depletion in carrageenan-induced pleurisy, Immunology, 1998, 93, 96–101[Crossref]
  • [48] Oyanagui Y., Inflammation and superoxide production by macrophages, Agents Action Suppl., 1980, 7, 174–179
  • [49] Salvemini D., Mazzon E., Dugo L., Riley D.P., Serraino I., Caputi A.P., Cuzzocrea S., Pharmacological manipulation of the inflammatory cascade by the superoxide dismutase mimetic, M40403, Br. J. Pharmacol., 2001, 132(4), 815–827[Crossref]
  • [50] Khattab M.M., TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitriteand superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion, Eur. J. Pharmacol., 2006, 548(1–3), 167–173[Crossref]
  • [51] Cuzzocrea S., Zingarelli B., Gilard E., Hake P., Salzman A.L., Szabo’ C., Protective effects of 3-aminobenzamide, an inhibitor of poly (ADPribose) synthase in carrageenan-induced models of local inflammation, Eur. J. Pharmacol., 1998, 342, 67–76[Crossref]
  • [52] Cuzzocrea S., Costantino G., Mazzson E., Zingarelli B., De Sarro A., Caputi AP., Protective effects of Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in paw oedema induced by carrageenan in the rat, Biochem. Pharmacol., 1999, 58(1), 171–176[Crossref]
  • [53] Cuzzocrea S., Mazzon E., Sautebin L., Dugo L., Serraino I., De Sarro A., Caputi A.P., Protective effects of Celecoxib on lung injury and red blood cells modification induced by carrageenan in the rat, Biochem. Pharmacol., 2002, 63(4), 785–795[Crossref]
  • [54] Wu Y., Zhou C., Li X., Song L., Wu X., Lin W., et al., Evaluation of antiinflammatory activity of the total flavonoids of Laggera pterodonta on acute and chronic inflammation models, Phytother. Res., 2006, 20(7), 585–590[Crossref]
  • [55] Nardi G.M., Siqueira Junior J.M., Delle Monache F., Pizzolatti M.G., Ckless K., Ribeiro-do-Valle R.M., Antioxidant and anti-inflammatory effects of products from Croton celtidifolius Bailon on carrageenan-induced pleurisy in rats, Phytomedicine, 2007, 14(2–3), 115–122[Crossref]
  • [56] Halici Z., Dengiz G.O., Odabasoglu F., Suleyman H., Cadirci E., Halici M., Amiodarone has antiinflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced paw edema, Eur. J. Pharmacol., 2007, 566(1–3), 215–221[Crossref]
  • [57] Leduc C., Gentili M.E., Estebe J.P., Le Corre P., Moulinoux J.P., Ecoffey C., The effect of local anesthetics and amitriptyline on peroxidation in vivo in an inflammatory rat model: preliminary reports, Anesth. Analg., 2002, 95(4), 992–996[Crossref]
  • [58] Dhuley J.N., Raman P.H., Mujumdar A.M., Naik S.R., Inhibition of lipid peroxidation by piperine during experimental inflammation in rats, Indian J. Exp. Biol., 1993, 31(5), 443–445
  • [59] Trombella S., Vergura R., Falzarano S., Guerrini R., Calo G., Spisani S., Nociceptin/orphanin FQ stimulates human monocyte chemotaxis via NOP receptor activation, Peptides, 2005, 26, 1497–1502[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.