Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 4 | 2 | 192-197
Tytuł artykułu

Pharmacologic responses of the mouse urinary bladder

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of the study was to determine pathways involved in contraction and relaxation of the mouse urinary bladder. Mouse bladder strips were set up in gassed Krebs-bicarbonate solution and responses to various drugs and electrical field stimulation were obtained. Isoprenaline (b-receptor agonist) caused a 63% inhibition of carbachol precontracted detrusor (EC50=2nM). Carbachol caused contraction (EC50=0.3µM), responses were antagonised more potently by 4-DAMP (M3-antagonist) than methoctramine (M2-antagonist). Electrical field stimulation caused contraction, which was inhibited by atropine (60%) and less by guanethidine and α,β-methylene-ATP. The neurogenic responses were not potentiated by inhibition of nitric oxide synthase. Presence of an intact urothelium significantly depressed responses to carbachol (p=0.02) and addition of indomethacin and L-NNA to remove prostaglandin and nitric oxide production respectively did not prevent the inhibitory effect of the urothelium. In conclusion, b-receptor agonists cause relaxation and muscarinic agonists cause contraction via the M3-receptor. Acetylcholine is the main neurotransmitter causing contraction while nitric oxide has a minor role. The mouse and human urothelium are similar in releasing a factor that inhibits contraction of the detrusor muscle which is unidentified but is not nitric oxide or a prostaglandin. Therefore, the mouse may be used as a model to study the lower urinary tract.
Słowa kluczowe

Opis fizyczny
  • Department of Biomedical Science, University of Sheffield, S102JF, Sheffield, UK,
  • Department of Urology, The Royal Hallamshire Hospital, S102JF, Sheffield, UK
  • Department of Biomedical Science, University of Sheffield, S102JF, Sheffield, UK
  • [1] Kumar V., Chapple C.R., Chess-Williams R. Characteristics of adenosine triphosphatase release from porcine and human normal bladder, J. Urol. 2004, 172(2), 744–747[Crossref]
  • [2] Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. J Auton Pharmacol. 2001, 21(5–6), 243–248[Crossref]
  • [3] Hawthorn M.H., Chapple C.R., Cock M., Chess-Williams R. Urothelium-derived inhibitory factor(s) influences on detrusor muscle contractility in vitro. Br J Pharmacol. 2000, 129(3), 416–419[Crossref]
  • [4] Templeman L., Chapple C.R., Chess-Williams R. Urothelium derived inhibitory factor and cross-talk among receptors in the trigone of the bladder of the pig. J Urol. 2002, 167(2 Pt 1), 742–745
  • [5] Chaiyaprasithi B., Mang C.F., Kilbinger H., Hohenfellner M.. Inhibition of human detrusor contraction by a urothelium derived factor. J Urol. 2003, 170(5), 1897–1900[Crossref]
  • [6] Arunlakshana O., Schild H.O. Some quantitative uses of drug antagonists. Br J Pharmacol. 1997, 120(4 Suppl), 151–161
  • [7] Burnstock G. Purinergic signalling in lower urinary tract. In: Purinergic and Pyrimidinergic Signalling. I. Molecular, Nervous and Urogenitary System Function. Abbracchio MP, Williams M (Eds). Berlin: Springer. Verlag, 423–515, 2001
  • [8] Andersson K.E., Arner A. Urinary Bladder Contraction and Relaxation: Physiology and Pathophysiology. Physiol Rev 2004, 84(3), 935–986[Crossref]
  • [9] Uchiyama T., Chess-Williams R. Muscarinic receptor subtypes of the bladder and gastrointestinal tract. J Smooth Muscle Res. 2004, 40(6), 237–247[Crossref]
  • [10] Chess-Williams R. Potential therapeutic targets for the treatment of detrusor overactivity. Expert Opin Ther Targets. 2004, 8(2), 95–106[Crossref]
  • [11] O’Reilly B.A., Kosaka A.H., Chang T.K., Ford A.P., Popert R., McMahon S.B. A quantitative analysis of purinoceptor expression in the bladders of patients with symptomatic outlet obstruction. BJU Int 2001, 87, 617–622[Crossref]
  • [12] Harvey R.A., Skennerton D.E., Newgreen D., Fry C.H. The contractile potency of adenosine triphosphate and ecto-adenosine triphosphatase activity in guinea pig detrusor and detrusor from patients with a stable, unstable or obstructed bladder, J. Urol. 2002, 168, 1235–1239[Crossref]
  • [13] Chapple C.R., Yamanishi T., Chess-Williams R. Muscarinic receptor subtypes and management of the overactive bladder. Urology. 2002, 60(5 Suppl. 1), 82–89[Crossref]
  • [14] Chess-Williams R. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol. 2002, 22(3), 133–145[Crossref]
  • [15] Chess-Williams R., Chapple C.R., Yamanishi T., Yasuda K., Sellers D.J. The minor population of M3- receptors mediate contraction of human detrusor muscle in vitro. J Auton Pharmacol. 2001, 21(5–6), 243–248[Crossref]
  • [16] Fetscher C., Fleichman M., Schmidt M., Krege S., Michel M.C. M(3) muscarinic receptors mediate contraction of human urinary bladder. Br J Pharmacol. 2002, 136(5), 641–643[Crossref]
  • [17] Choppin A. Muscarinic receptors in isolated urinary bladder smooth muscle from different mouse strains. Br J Pharmacol. 2002, 137(4), 522–528[Crossref]
  • [18] Ehlert F.J., Griffin M.T., Abe D.M., Vo T.H., Taketo M.M., Manabe T., Matsui M. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther. 2005, 313(1), 368–378[Crossref]
  • [19] Matsui M., Motomura D., Karasawa H., Fujikawa T., Jiang J., Komiya Y., et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 2000, 97, 9577–9584
  • [20] Igawa Y., Zhang X., Nishizawa O., Umeda M., Iwata A., Taketo M.M., et al. Cystometric findings in mice lacking muscarinic M2 or M3 receptors. J Urol. 2004, 172(6, Part 1 of 2), 2460–2464[Crossref]
  • [21] Nomiya M., Yamaguchi O. A quantitative analysis of mRNA expression of α1 and β-adrenoceptor subtypes and their functional roles in human normal and obstructed bladders. J. Urol. 2003, 170, 649–653[Crossref]
  • [22] Morita T., Iizuka H., Iwata T., Kondo S. Function and distribution of β3-adrenoceptors in rat, rabbit and human urinary bladder and external urethral sphincter. J Smooth Muscle Res 2000, 36, 21–32[Crossref]
  • [23] Oshita M., Hiraoka Y., Watanabe Y. Characterization of β-adrenoceptors in urinary bladder: comparison between rat and rabbit. Br J Pharmacol 1997, 122, 1720–1724[Crossref]
  • [24] Takeda H., Yamazaki Y., Akahane M., Igawa Y., Ajisawa Y., Nishizawa O. Role of the β3- adrenoceptor in urine storage in the rat: comparison between the selective β3-adrenoceptor agonist, CL316, 243 and various smooth muscle relaxants. J Pharmacol Exp Ther 2000, 293, 939–945
  • [25] Andersson K.E., Persson K. The L-arginine/nitric oxide pathway and nonadrenergic, non-cholinergic relaxation of the lower urinary tract. Gen Pharmacol 1993, 24, 833–839
  • [26] Ehren I., Iversen H., Jansson O., Adolfsson J., Wiklund NP. Localization of nitric oxide synthase activity in the human lower urinary tract and its correlation with neuroeffector responses. Urology 1994, 44, 683–687[Crossref]
  • [27] Masuda H., Tsujii T., Okuno T., Kihara K., Goto M., Azuma H. Localization and role of nitric oxide synthase and endogenous nitric oxide synthase inhibitors in the rabbit lower urinary tract. J Urol 2002, 167, 2235–2240[Crossref]
  • [28] Lemack G.E., Zimmern P.E., Vazquez D., Connell J.D., Lin V.K. Altered response to partial bladder outlet obstruction in mice lacking inducible nitric oxide synthase. J Urol 2000, 163, 1981–1987[Crossref]
  • [29] Fujiwara M., Andersson K.E., Persson K. Nitric oxide-induced cGMP accumulation in the mouse bladder is not related to smooth muscle relaxation. Eur J Pharmacol 2000, 401(2), 241–250[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.