Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2008 | 3 | 4 | 406-416
Tytuł artykułu

Ketanserin reduces the postischemic EEG and behavioural changes following Endothelin-1-induced occlusion of the middle cerebral artery in conscious rats

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We modeled the common clinical conditions of human stroke in fully conscious rats through an occlusion of the middle cerebral artery (MCAO) by means of unilateral microinjection of Endothelin-1 (ET1) in the vicinity of the artery (EMCAO model). Since the role of serotonin (5-HT) system in the regulation of the cerebral blood flow has been known for long time and no data are available at present for the effects of 5-HT antagonists in focal ischemia models, we further tested whether a blockade of the serotonin-2A (5-HT2A) receptors by ketanserin (20 min post-ET1) would diminish the late EMCAO-induced functional and morphological changes. The long-term neurological (postural reflex) and electroencephalogram (EEG) changes in the somatosensory cortical region (S1FL) were used to assess the effects of ketanserin on the post-ischemic changes. The study was supplemented by a histopathological examination of S1FL area and striatum of both hemispheres. The EMCAO/ ketanserin-treated rats showed much smaller neurological deficits than the EMCAO rats treated with vehicle. This effect was observed on day 3 and lasted until the end of experiments-14 days after EMCAO. The depression of alpha and beta EEG frequencies found after EMCAO was significantly and earlier restored following ketanserin. Notably, there was not augmentation of the pathological slow EEG waves at day 3 post-ET1 in the EMCAO ketanserin-treated rats compared with that observed in the EMCAO vehicle-treated rats. Although there were mild morphological changes in the penumbral S1FL cortical region after EMCAO, ketanserin reduced the histopathological difference between the ipsilateral and contralateral cortical S1FL regions, but did not change the difference between striatum of both sides. Ketanserin reduced the infarct size in ipsilateral hemisphere (mainly cortex). In conclusion, the results showed that treatment with ketanserin at the early stage of stroke may reduce the consequences of ischemia by improvement of functional and morphological recovery at later stages. Ketanserin appears to be a promising candidate for mitigating the consequences of stroke.
Wydawca

Czasopismo
Rocznik
Tom
3
Numer
4
Strony
406-416
Opis fizyczny
Daty
wydano
2008-12-01
online
2008-10-22
Twórcy
  • Department of Neurobiology of Adaptation, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria, s06moy@yahoo.com
  • Department of Neurobiology of Adaptation, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
autor
  • Department of Neurobiology of Adaptation, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • Department of Neurobiology of Adaptation, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
Bibliografia
  • [1] Muir K.W., Lees K.R., Clinical experience with excitatory amino acid antagonist drugs, Stroke, 1995, 26, 503–513 [Crossref]
  • [2] Kanthan R., Shuaib A., Griebel R., El-Alazounni H., Miyashita H., Kalra J., Evaluation of monoaminergic neurotransmitters in the acute focal ischemic human brain model by intracerebral in vivo microdialysis, Neurochem. Res., 1996, 21, 563–566 http://dx.doi.org/10.1007/BF02527754[Crossref]
  • [3] Van Nueten J.M., Janssen P.A., Van Beek J., Xhonneux R., Verbeuren T.J. Vanhoutte P.M., Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. Pharmacol. Exp. Therap., 1981, 218, 217–230
  • [4] Wiernsperger N., Serotonin 5-HT2 receptors and brain circulation, J. Cardiovasc. Pharmacol., 1990, 16, S20–S24
  • [5] Baxter G., Kennett G., Blackburn T., Blaney F., 5-HT2 receptor subtypes: A family re-united?, Trends Pharmacol. Sci., 1995, 16, 105–110 http://dx.doi.org/10.1016/S0165-6147(00)88991-9[Crossref]
  • [6] Liechti M.E., Saur M., Gamma A., Hell D., Vollenweider F.X., Psychological and physiological effects of MDMA (“Ecstasy”) after pretreatment with the 5-HT2 antagonist ketanserin in healthy humans, Neuropsychopharmacology, 2000, 23, 396–405 http://dx.doi.org/10.1016/S0893-133X(00)00126-3[Crossref]
  • [7] Globus M.Y.T., Wester P., Buso R., Dietrich W.D., Ischemia-induced extracellular release of serotonin plays a role in CA1 neuronal cell death in rats, Stroke, 1992, 23, 1595–1601
  • [8] Karasawa Y., Araki H., Otomo S., Effects of ketanserin and mianserin on delayed neuronal death induced by cerebral ischemia in Mongolian gerbils, Psychopharmacology, 1992, 109, 264–270 http://dx.doi.org/10.1007/BF02245872[Crossref]
  • [9] Klisch J., Bode-Greuel K.M., Ketanserin reduces neuronal calcium accumulation and cell death in the hippocampus of the mongolian gerbil after transient forebrain ischemia, Brain Res., 1992, 578, 1–7 http://dx.doi.org/10.1016/0006-8993(92)90221-T[Crossref]
  • [10] Ohno M., Yamamoto T., Watanabe S., Blockade of 5-HT2 receptors protects against impairment of working memory following transient forebrain ischemia in the rat, Neurosci. Letters, 1991, 129, 185–188 http://dx.doi.org/10.1016/0304-3940(91)90457-5[Crossref]
  • [11] Back T., Prado R., Zhao W., Watson B.D., Ginsberg M.D. Ritanserin, a 5-HT2 receptor antagonist, increases subcortical blood flow following photothrombotic middle cerebral artery occlusion in rats, Neurol. Res., 1998, 20, 643–647
  • [12] Takagi K., Ginsberg M.D., Globus M.Y.T., Busto R., Dietrich W.D., The effect of ritanserin, a 5-HT2 receptor antagonist, on ischemic cerebral blood flow and infarct volume in rat middle cerebral artery occlusion, Stroke, 1994, 25, 481–485
  • [13] Dietrich W.D., Busto R., Ginsberg M.D., Effect of the serotonin antagonist ketanserin on the hemodynamic and morphological consequences of thrombotic infarction, J. Cereb. Blood Flow Metab., 1989, 9, 812–820
  • [14] Sharkey J., Butcher S.P., Characterization of an experimental model of stroke produced by intracerebral microinjection of endothelin-1 adjacent to the rat middle cerebral artery, J. Neurosci. Meth., 1995, 60, 125–131 http://dx.doi.org/10.1016/0165-0270(95)00003-D[Crossref]
  • [15] Sharkey J., Ritchie I.M., Kelly P.A.T., Perivascular microapplication of endothelin-1: a new model of focal cerebral ischaemia in the rat, J. Cereb. Blood Flow Metab., 1993, 13, 865–871
  • [16] Sharkey J., Butcher S.P., Kelly J.S., Endothelin-1 induced middle cerebral artery occlusion: pathological consequences and neuroprotective effects of MK801, J. Auton. Nerv. Syst., 1994, 49, S177–S185 http://dx.doi.org/10.1016/0165-1838(94)90109-0
  • [17] Biernaskie J., Corbett D., Peeling J., Wells J., Lei H., A serial MR study of cerebral blood flow changes and lesion development following endothelin-1-induced ischemia in rats, Magn. Reson. Med., 2001, 46, 827–830 http://dx.doi.org/10.1002/mrm.1263
  • [18] Marston H.M., Faber E.S., Crawford J.H., Butcher S.P., Sharkey J., Behavioural assessment of endothelin-1 induced middle cerebral artery occlusion in the rat, Neuroreport, 1995, 6, 1067–1071 http://dx.doi.org/10.1097/00001756-199505090-00029
  • [19] Ward N.M., Sharkey J., Brown V.J., Assessment of sensorimotor neglect after occlusion of the middle cerebral artery in the rat, Behav. Neurosci., 1997, 111, 1133–1145 http://dx.doi.org/10.1037/0735-7044.111.5.1133[Crossref]
  • [20] Riek-Burchardt M., Henrich-Noack P., G.A. Metz G.A., Reymann K.G., Detection of chronic sensorimotor impairments in the ladder rung walking task in rats with endothelin-1-induced mild focal ischemia, J. Neurosci. Meth., 2004, 137, 227–233 http://dx.doi.org/10.1016/j.jneumeth.2004.02.012
  • [21] Baldauf K., Henrich-Noack P., Reymann K.G., Detrimental effects of halothane narcosis on damage after endothelin-1-induced MCAO, J. Neurosci. Meth., 2007, 162, 14–18 http://dx.doi.org/10.1016/j.jneumeth.2006.11.019[WoS]
  • [22] Moyanova S., Kirov R., Kortenska L., Multi-unit activity suppression and sensorimotor deficits after endothelin-1-induced middle cerebral artery occlusion in conscious rats, J. Neurol. Sci., 2003, 212, 59–67 http://dx.doi.org/10.1016/S0022-510X(03)00102-3
  • [23] Moyanova S., Kortenska L., Kirov R., Iliev I., Quantitative electroencephalographic changes due to middle cerebral artery occlusion by endothelin-1 in conscious rats, Arch. Physiol. Biochem., 1998, 106, 384–391 http://dx.doi.org/10.1076/apab.106.5.384.4362
  • [24] Moyanova S.G., Kortenska L.V., Mitreva R.G., Pashova V.D., Ngomba R.T., Nicoletti F., Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia, Brain Res., 2007, 1153, 58–67 http://dx.doi.org/10.1016/j.brainres.2007.03.070[WoS]
  • [25] Karhunen H., Jolkkonen J., Sivenius J., Pitkanen A., Epileptogenesis after experimental focal cerebral ischemia, Neurochem. Res., 2005, 30, 1529–1542 http://dx.doi.org/10.1007/s11064-005-8831-y[Crossref]
  • [26] STAIR (Stroke Therapy Academic Industry Roundtable). Recommendations for standards regarding preclinical neuroprotective and restorative drug development, Stroke, 1999, 30, 2752–2258
  • [27] Glennon R.A., Dukat M., Serotonin receptor subtypes, In: F.E. Bloom, D.J. Kupfer (Eds.), Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York, 1995, 415–429
  • [28] Paxinos G, Watson C., The rat brain in stereotaxic coordinates. Academic Press, New York, 1997
  • [29] Bederson J.O.B., Pitts L.A.H.R., Tsuji M., Nishimura M.C., Davis R.L., Bartkowski H., Rat middle cerebral artery occlusion: evaluation of the model and development of neurologic examination, Stroke, 1986, 17, 472–476 [Crossref]
  • [30] Scremin O.U., Cerebral vascular system. In: G. Paxinos [Ed.] The Rat Nervous System, Academic Press, San Diego, 1995, 3–35
  • [31] Gramsbergen J.B., Skjøth-Rasmussen J., Rasmussen C., Lambertsen K.L., On-line monitoring of striatum glucose and lactate in the endothelin-1 rat model of transient focal cerebral ischemia using microdialysis and flow-injection analysis with biosensors, J. Neurosci. Meth., 2004, 140, 93–101 http://dx.doi.org/10.1016/j.jneumeth.2004.03.027
  • [32] Schmid-Elsaesser R., Hungerhuber E., Zausinger S., Baethmann A., Reulen H.-J., Combination drug therapy and mild hypothermia. A promising treatment strategy for reversible focal cerebral ischemia, Stroke, 1999, 30, 1891–1899 [Crossref]
  • [33] Bolay H., Dalkara T., Mechanisms of motor dysfunction after transient MCA occlusion: persistent transmission failure in cortical synapses is a major determinant, Stroke, 1998, 29, 1988–1994 [Crossref]
  • [34] Williams A.J., Lu X.-C.M., Hartings J.A., Tortella F.C., Neuroprotection assessment by topographic electroencephalographic analysis: effects of a sodium channel blocker to reduce polymorphic delta activity following ischaemic brain injury in rats, Fundam. Clin. Pharmacol., 2003, 17, 581–593 http://dx.doi.org/10.1046/j.1472-8206.2003.00183.x[Crossref]
  • [35] Hartings J.A., Williams A.J., Tortella F.C., Occurrence of nonconvulsive seizures, periodic lateralized epileptiform discharges and rhythmic delta activity in rat focal ischemia, Exp. Neurol., 2003, 179, 139–149 http://dx.doi.org/10.1016/S0014-4886(02)00013-4[Crossref]
  • [36] Burghaus L., Hilker R., Dohmen C., Bosche B., Winhuisen L., Galldiks N., Szelies B., Heiss W.-D., Early electroencephalography in acute ischemic stroke: Prediction of a malignant course?, Clin. Neurol. Neurosurg., 2007, 109, 45–49 http://dx.doi.org/10.1016/j.clineuro.2006.06.003[WoS][Crossref]
  • [37] Faught E., Current role of electroencephalography in cerebral ischemia, Stroke, 1993, 24, 609–613 [Crossref]
  • [38] Windle V., Szymanska A., Granter-Button S., White C., Buist R., Peeling J., Corbett D., An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat, Exp. Neurology, 2006, 201, 324–334 http://dx.doi.org/10.1016/j.expneurol.2006.04.012[Crossref]
  • [39] Zilles K., Wree A., Cortex: Areal and laminar structure, In: G. Paxinos (Ed.), The Rat Nervous System, Academic Press, San Diego, 1995, 649–685
  • [40] Marek G.J., Aghajanian G.K., 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex, Eur. J Pharmacol., 1999; 367, 197–206 http://dx.doi.org/10.1016/S0014-2999(98)00945-5[Crossref]
  • [41] McCormick D.A., Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity, Prog. Neurobiol., 1992, 39, 337–388 http://dx.doi.org/10.1016/0301-0082(92)90012-4[Crossref]
  • [42] Dawson L.A., Galandak J., Djali S., Attenuation of ischemic efflux of endogenous amino acids by the novel 5-HT1A/5-HT2 receptor ligand adatanserin, Neurochem. Int., 2002, 40, 203–209 http://dx.doi.org/10.1016/S0197-0186(01)00082-1[Crossref]
  • [43] Van Hemelrijck A., Vermijlen D., Hachimi-Idrissi S., Sarre S., Ebinger G., Michotte Y., Effect of resuscitative mild hypothermia on glutamate and dopamine release, apoptosis and ischaemic brain damage in the endothelin-1 rat model for focal cerebral ischaemia, J. Neurochem., 2003, 87, 66–75 http://dx.doi.org/10.1046/j.1471-4159.2003.01977.x[Crossref]
  • [44] Yang B.C., Nichols W.W., Lawson D.L., Mehta J. L., 5-Hydroxytryptamine potentiates vasoconstrictor effect of endothelin-1, Am. J. Physiol., 1992, 262, H931–936
  • [45] Van Wijngaarden I., Tulp M.Th.M., Soudijn W., The concept of selectivity in 5-HT receptor research, Eur. J. Pharmacol., 1990, 188, 301–312 http://dx.doi.org/10.1016/0922-4106(90)90190-9[Crossref]
  • [46] Orallo F., Rosa E., Garcia-Ferreiro T., Campos-Toimil M., Cadavid M.I., Loza M.I., Cardiovascular effects of ketanserin on normotensive rats in vivo and in vitro, Gen. Pharmacol., 2000, 35, 95–105 [Crossref]
  • [47] Centurion D., Mehotra S., Sánchez-López A., Gupta S., MaassenVanDenBrink A., Villalón C.M., Potential vascular α1-adrenoceptor blocking properties of an array of 5-HT receptor ligands in the rat, Eur. J. Pharmacol., 2006, 535, 234–242 http://dx.doi.org/10.1016/j.ejphar.2006.02.010[Crossref]
  • [48] Marwood J.F., Influence of alpha 1-adrenoceptor antagonism of ketanserin on the nature of its 5-HT2 receptor antagonism, Clin. Exp. Pharmacol. Physiol., 1994, 21, 955–961 http://dx.doi.org/10.1111/j.1440-1681.1994.tb02657.x[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11536-008-0058-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.