Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 3 | 2 | 123-133
Tytuł artykułu

Review of surfactin chemical properties and the potential biomedical applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
Surfactin, a highly powerful biosurfactant produced by various strains of the genus Bacillus, exhibits antibacterial, antiviral, antitumor and hemolytic action. This anionic cyclic lipopeptide is constituted by a heptapeptide interlinked with a β-hydroxy fatty acid. Due to its amhipathic nature surfactin incorporates into the phospholipid bilayer and induces permeabilization and perturbation of target cells. The rising antibiotic resistance as well as a number of remarkable surfactin activities shows that it deserves special interest and is considered as a candidate compound for combating several health related issues. In this review, the current state of knowledge of surfactin properties, biomedical potential and limitations for its application is presented.

Opis fizyczny
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 128 44, Praha 2, Czech Republic,
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 128 44, Praha 2, Czech Republic
  • [1] Boman H.G., Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol., 1995, 13, 61–92[Crossref]
  • [2] Zasloff M., Innate immunity, antimicrobial peptides, and protection of the oral cavity, Lancet, 2002, 360, 1116–7[Crossref]
  • [3] Zhang L., Falla T.J., Cationic antimicrobial peptides - An update, Expert. Opin. Invest. Drugs, 2004, 13, 97–106 [Crossref]
  • [4] Giuliani A., Pirri G., Fabiole Nicoletto S., Antimicrobial peptides: an overview of a promising class of therapeutics, Central European Journal of Biology, 2007, 2, 1–33[Crossref]
  • [5] Arima K., Kakinuma A., Tamura G., Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation, Biochem. Biophys. Res. Commun., 1968, 31, 488–494[Crossref]
  • [6] Kakinuma A., Hori M., Isono M., Tamura G., Arima K., Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis, Agric. Biol. Chem., 1969, 33, 971–997 [Crossref]
  • [7] Rosenberg E., Ron E.Z., High-and low-molecularmass microbial surfactants, Appl. Microbiol. Biotechnol., 1999, 52, 154–162[Crossref]
  • [8] Mulligan C.N., Environmental applications for biosurfactants, Environ. Pollut., 2005, 133, 183–198[Crossref]
  • [9] Becher P., Emulsions, theory and practice, 2nd ed., Reinhold Publishing, New York, 1965
  • [10] Cameotra S.S., Makkar R.S., Synthesis of biosurfactants in extreme conditions, Appl. Microbiol. Biotechnol., 1998, 50, 520–529[Crossref]
  • [11] Geiger T., Clarke S., Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation, J. Biol. Chem., 1987, 262, 785–794
  • [12] Desai J.D., Banat I.M., Microbial production of surfactants and their commercial potential, Microbiol. Mol. Biol. Rev., 1997, 61, 47–64
  • [13] Kinsinger R.F., Kearns D.B., Hale M., Fall R., Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtils, J. Bacteriol., 2005, 187, 8462–8469[Crossref]
  • [14] Julkowska D., Obuchowski M., Holland I.B., Séror S.J., Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium, J. Bacteriol., 2005, 187, 65–76[Crossref]
  • [15] Stanley N.R., Lazazzera B.A, Environmental signals and regulatory pathways that influence biofilm formation, Mol. Microbiol., 2004, 52, 917–924[Crossref]
  • [16] Bonmatin J.M., Laprévote O., Peypoux F., Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationship to design new bioactive agents, Comb. Chem. High Throughput Screen., 2003, 6, 541–556
  • [17] Kowall M., Vater J., Kluge B., Stein T., Franke P., Ziessow D., Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105, J. Colloid. Interface Sci., 1998, 204, 1–11
  • [18] Hue N., Serani L., Laprévote O., Structural investigation of cyclic peptidolipids from Bacillus subtilis by high energy tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2001, 15, 203–209<203::AID-RCM212>3.0.CO;2-6[Crossref]
  • [19] Bonmatin J.M., Genest M., Labbé H., Ptak M., Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics, Biopolymers, 1994, 34, 975–986[Crossref]
  • [20] Bonmatin J.M., Genest M., Labbé H., Grangemard I., Peypoux F., Maget-Dana R., et al., Production, isolation and characterization of [Leu4]-and [Ile4]-surfactins from Bacillus subtilis, Lett. Peptide Sci., 1995, 2, 41–47[Crossref]
  • [21] Tsan P., Volpon L., Besson F., Lancelin J.M., Structure and dynamics of surfactin studied by NMR in micellar media, J. Am. Chem. Soc., 2007, 129, 1968–77[Crossref]
  • [22] Peypoux F., Bonmatin J.M., Wallach J., Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol., 1999, 51, 553–563[Crossref]
  • [23] Heerklotz H., Seelig J., Detergent-like action of the antibiotic peptide surfactin on lipid membranes, Biophys. J., 2001, 81, 1547–1554 [Crossref]
  • [24] Bernheimer A.W., Avigad L.S., Nature and properties of a cytolytic agent produced by Bacillus subtilis, J. Gen. Microbiol., 1970, 6, 361–366 [Crossref]
  • [25] Carrillo C., Teruel J.A., Aranda F.A., Ortiz A., Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin, Biochem. Biophys. Acta, 2003, 1611, 91–97[Crossref]
  • [26] Maget-Dana R., Ptak M., Interactions of surfactin with membrane models, Biophys. J., 1995, 68, 1937–1943 [Crossref]
  • [27] Grau A., Gomez Fernandez J.C., Peypoux F., Ortiz A., A study on the interactions of surfactin with phospholipid vesicles, Biochim. Biophys. Acta, 1999, 1418, 307–319[Crossref]
  • [28] Heerklotz H., Seelig J., Leakage and lysis of lipid membranes induced by the lipopeptide surfactin, Eur. Biophys. J., 2007, 36, 305–314[Crossref]
  • [29] Maget-Dana R., Ptak M., Interfacial properties of surfactin, J. Colloid Interface Sci., 1992, 153, 285–291[Crossref]
  • [30] Osman M., Høiland H., Holmsen H., Ishigami Y., Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly, J. Pept. Sci., 1998, 4, 449–458<449::AID-PSC164>3.0.CO;2-#[Crossref]
  • [31] Thimon L., Peypoux F., Maget-Dana R., Roux B., Michel G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis, Biotechnol. Appl. Biochem., 1992, 16, 144–151
  • [32] Hosono K., Suzuki H., Acylpeptides, the inhibition of cyclic adenosine 3′,5′-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase, J. Antibiot., 1983, 36, 679–683
  • [33] Morikawa M., Hirata Y., Imanaka T., A study on the structure-function relationship of lipopeptide biosurfactants, Biochim. Biophys. Acta, 2000, 1488, 211–218
  • [34] Lipmann F., Gevers W., Kleinkauf H., Roskoski, R. Jr., Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine, Adv. Enzymol. Relat. Areas Mol. Biol., 1971, 35, 1–34[Crossref]
  • [35] Sieber S.A., Marahiel M.A., Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides, J. Bacteriol., 2003, 185, 7036–7043[Crossref]
  • [36] Kluge B., Vater J., Salnikow J., Eckart K., Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332, FEBS Lett., 1988, 231, 107–110
  • [37] Nakano M.M., Zuber P., Molecular biology of antibiotic production in Bacillus, Biotechnology, 1990, 10, 223–240
  • [38] Vater J., Stein T., Vollenbroich D., Kruft V., Wittmann-Liebold B., P. Franke, et al., The modular organization of multifunctional peptide synthetases, J. Protein Chem., 1997, 16, 557–564[Crossref]
  • [39] Steller S., Sokoll A., Wilde C., Bernhard F., Franke P., Vater J., Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein, Biochemistry, 2004, 43, 11331–11343[Crossref]
  • [40] Conti E., Stachelhaus T., Marahiel M.A, Brick P., Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, EMBO J., 1997, 16, 4174–4183[Crossref]
  • [41] Dieckmann R., Lee Y.O., van Liempt H., von Dohren H., Kleinkauf H., Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases, FEBS Lett., 1995, 357, 212–216[Crossref]
  • [42] Weber T., Baumgartner R., Renner C., Marahiel M.A., Holak T.A., Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases, Structure, 2000, 8, 407–418[Crossref]
  • [43] Keating T.A., Marshall C.G., Walsh C.T., Keating A.E., The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains, Nat. Struct. Biol., 2002, 9, 522–526
  • [44] Belshaw P.J., Walsh C.T., Stachelhaus T., Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis, Science, 1999, 284, 486–489[Crossref]
  • [45] Schwarzer D., Mootz H.D., Linne U., Marahiel M.A., Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 14083–14088[Crossref]
  • [46] Bruner S.D., Weber T., Kohli R.M., Schwarzer D., Marahiel M.A., Walsh C.T., et al., Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE, Structure, 2002, 10, 301–310[Crossref]
  • [47] Tseng C.C., Bruner S.D., Kohli R.M., Marahiel M.A., Walsh C.T., Siber S.A., Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthese, Biochemistry, 2002, 41, 13350–13359[Crossref]
  • [48] Linne U., Marahiel M.A., Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization, Biochemistry, 2000, 39, 10439–10447[Crossref]
  • [49] Tsuge K., Ohata Y., Shoda M., Gene yerP, involved in surfactin self-resistance in Bacillus subtilis, Antimicrob. Agents Chemother., 2001, 45, 3566–3573[Crossref]
  • [50] Guenzi E., Galli G., Grgurina I., Pace E., Ferranti P., Grandi G., Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and ctivity of the multienzyme copmlex, J. Biol. Chem., 1998, 273, 14403–14410[Crossref]
  • [51] Hamoen L.W., Venema G., Kuipers O.P., Controlling competence in Bacillus subtilis: shared use of regulators, Microbiology, 2003, 149, 9–17[Crossref]
  • [52] Nakano M.M., Corbell N., Besson J., Zuber P., Isolation and charcterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis, J. Bacteriol., 1992, 182, 3274–3277[Crossref]
  • [53] Lambalot R.H., Gehring A.M., Flugel R.S., Zuber P., LaCelle M., Marahiel M.A., et al., A new enzyme superfamily - the phosphopantetheinyl transferases, Chem Biol., 1996, 3, 923–936[Crossref]
  • [54] Sheppard J.D., Jumarie C., Cooper D.G., Laprade R., Ionic channels induced by surfactin in planar lipid bilayer membranes, Biochim. Biophys. Acta, 1991, 26, 13–23 [Crossref]
  • [55] Kim K., Jung S.Y., Lee D.K., Jung J.K., Park J.K., Kim D.K., et al., Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2, Biochem. Pharmacol., 1998, 55, 975–985
  • [56] Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., Vater J., Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives, J. Antibiot., 1999, 52, 613–619. [Crossref]
  • [57] Kameda Y., Oira S., Matsui K., Kanatomo S., Hase T., Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311, Chem. Pharm. Bull., 1974, 22, 938–944 [Crossref]
  • [58] Barry A.L., Fuchs P.C., Brown S.D., Evaluation of daptomycin susceptibility testing by Etest and the effect of different batches of media, J. Antimicrob. Chemother., 2001, 48, 557–561[Crossref]
  • [59] Rotondi K.S., Gierasch L.M., A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 2005, 80, 374–385[Crossref]
  • [60] Goldberg J., Cyclic peptide antibiotics; selfassembly required, Trends Microbiol., 2001, 9, 412[Crossref]
  • [61] Wright J.R., Pulmonary surfactant: a front line of lung host defense, J. Clin. Invest., 2003, 111, 1453–1455 [Crossref]
  • [62] Singh P., Cameotra S.S., Potential applications of microbial surfactants in biomedical sciences, Trends Biotechnol., 2004, 22, 142–146[Crossref]
  • [63] Yoneyama H., Katsumata R., Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 2006, 70, 1060–1075[Crossref]
  • [64] Hadley C., Overcoming resistance, EMBO Rep., 2004, 5, 550–552[Crossref]
  • [65] McHenney M.A., Baltz R.H., Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production, Microbiology, 1996, 142, 2363–2373
  • [66] Tally F.P., De Bruin M.F., Development of daptomycin for gram-positive infections, J. Antimicrob. Chemother., 2000, 46, 523–526[Crossref]
  • [67] Hwang M.H., Lim J.H., Yun H.I., Rhee M.H., Cho J.Y., Hsu W.H., et al., Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells, Biotechnol. Lett., 2005, 27, 1605–1608
  • [68] Hwang Y.H., Park B.K., Lim J.H., Kim M.S., Park S.C., Hwang M.H., et al., Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock, Eur. J. Pharmacol., 2007, 556, 166–171[Crossref]
  • [69] Takahashi T., Ohno O., Ikeda Y., Sawa R., Homma Y., Igarashi M., et al., Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin, J. Antibiot., 2006, 59, 35–43[Crossref]
  • [70] Vollenbroich D., Pauli G., Ozel M., Vater J., Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis, Appl. Environ. Microbiol., 1997, 63, 44–49
  • [71] Fassi Fehri L., Wroblewski H., Blanchard A., Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis, Antimicrob. Agents Chemother., 2007, 51, 468–74[Crossref]
  • [72] Rodrigues L., Banat I.M., Teixeira J., Oliveira R., Biosurfactants: potential applications in medicine, J. Antimicrob. Chemother., 2006, 57, 609–618[Crossref]
  • [73] Morikawa M., Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species, J. Biosci. Bioeng., 2006, 101, 1–8[Crossref]
  • [74] Mireles 2nd J.R., Toguchi A., Harshey R.M., Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation, J. Bacteriol., 2001, 183, 5848–5854[Crossref]
  • [75] Vollenbroich D., Ozel M., Vater J., Kamp R.M., Pauli G., Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis, Biologicals, 1997, 25, 289–297[Crossref]
  • [76] Kim S.Y., Kim J.Y., Kim S.H., Bae H.J., Yi H., Yoon S.H., et al., Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression, FEBS Lett., 2007, 581, 865–871[Crossref]
  • [77] Kikuchi T., Hasumi K., Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo, Biochim. Biophys. Acta, 2002, 29, 234–245 [Crossref]
  • [78] Kikuchi T., Hasumi K., Enhancement of reciprocal activation of prourokinase and plasminogen by the bacterial lipopeptide surfactins and iturin Cs, J. Antibiot., 2003, 56, 34–37 [Crossref]
  • [79] Lim J.H., Park B.K., Kim M.S., Hwang M.H., Rhee M.H., Park S.C., et al., The anti-thrombotic activity of surfactins, J. Vet. Sci., 2005, 6, 353–355
  • [80] Kim S.D., Park S.K., Cho J.Y., Park H.J., Lim J.H., Yun H.I., et al., Surfactin C inhibits platelet aggregation, J. Pharm. Pharmacol., 2006, 58, 867–870[Crossref]
  • [81] Dehghan-Noudeh G., Housaindokht M., Fazly Bazzaz B.S., Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633, J. Microbiol., 2005, 43, 272–276
  • [82] Symmank H., Franke P., Saenger W., Bernhard F., Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase, Protein Eng., 2002, 15, 913–921[Crossref]
  • [83] Dufour S., Deleu M., Nott K., Wathelet B., Thonart P., Paquot M., Hemolytic activity of new linear surfactin analogs in relation to their physicochemical properties, Biochim. Biophys. Acta, 2005, 1726, 87–95
  • [84] Bouffioux O., Berquand A., Eeman M., Paquot M., Dufrêne Y.F., Brasseur R., et al., Molecular organization of surfactin-phospholipid monolayers: effect of phospholipid chain length and polar head, Biochim. Biophys. Acta, 2007, 1768, 1758–1768[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.