PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 1 | 3 | 179-204
Tytuł artykułu

NK cell-based immunotherapies against tumors

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural killer (NK) cells provide the first line of defence against pathogens and tumors. Their activation status is regulated by pro-inflammatory cytokines and by ligands that either target inhibitory or activating cell surface receptors belonging to the immunoglobulin-like, C-type lectin or natural cytotoxicity receptor families. Apart from non-classical HLA-E, membrane-bound heat shock protein 70 (Hsp70) has been identified as a tumor-specific recognition structure for NK cells expressing high amounts of the C-type lectin receptor CD94, acting as one component of an activating heterodimeric receptor complex. Full-length Hsp70 protein (Hsp70) or the 14-mer Hsp70 peptide T-K-D-N-N-L-L-G-R-F-E-L-S-G (TKD) in combination with pro-inflammatory cytokines enhances the cytolytic activity of NK cells towards Hsp70 membrane-positive tumors. Based on these findings cytokine/TKD-activated NK cells were adoptively transferred in tumor patients. These findings were compared to results of clinical trials using cytokine-activated NK cells.
Wydawca
Czasopismo
Rocznik
Tom
1
Numer
3
Strony
179-204
Opis fizyczny
Daty
wydano
2006-09-01
online
2006-08-23
Twórcy
  • Institute of Medical Biochemistry and Molecular Biology, University of Greifswald, Clinical Center Sauerbruchstraße, D-17487, Greifswald, Germany
  • Department of Hematology and Internistic Oncology, University Hospital of Regensburg, D-93053, Regensburg, Germany
Bibliografia
  • [1] D.R. Ciocca and S.K. Calderwood: “Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications”, Cell Stress Chaperones, Vol. 10, (2005), pp. 86–103.
  • [2] J. Radons and G. Multhoff: “Heat shock protein 70 (Hsp70) peptide elicits an NK cell-mediated immune response against cancer”, In: R.M. Mohan (Ed.): Research Advances in Cancer, Vol. 5, Global Research Network, Kerala, 2005, pp. 77–86.
  • [3] J. Radons and G. Multhoff: “Immunostimulatory functions of membrane-bound and exported heat shock protein 70”, Exerc. Immunol. Rev., Vol. 11, (2005), pp. 17–33.
  • [4] D.C. DeNagel and S.K. Pierce: “A case for chaperones in antigen processing”, Immunol. Today, Vol. 13, (1992), pp. 86–89.
  • [5] S. Lindquist and E.A. Craig: “The heat-shock proteins”, Annu. Rev. Genet., Vol. 22, (1988), pp. 631–677. [Crossref]
  • [6] F.U. Hartl: “Molecular chaperones in cellular protein folding”, Nature, Vol. 381, (1996), pp. 571–579.
  • [7] J. Nylandsted, K. Brand and M. Jäättelä: “Heat shock protein 70 is required for the survival of cancer cells”, Ann. N. Y. Acad. Sci., Vol. 926, (2000), pp. 122–125. http://dx.doi.org/10.1111/j.1749-6632.2000.tb05605.x[Crossref]
  • [8] M. Jäättelä, D. Wissing, K. Kokholm, T. Kallunki and M. Egeblad: “Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases”, EMBO J., Vol. 17, (1998), pp. 6124–6134.
  • [9] J. Nylandsted, M. Gyrd-Hansen, A. Danielewicz, N. Fehrenbacher, U. Lademann, M. Hoyer-Hansen, E. Weber, G. Multhoff, M. Rohde and M. Jäättelä: “Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization”, J. Exp. Med., Vol. 200, (2004), pp. 425–435.
  • [10] M. Gehrmann, J. Marienhagen, H. Eichholtz-Wirth, E. Fritz, J. Ellwart, Jäättelä, T. Zilch and G. Multhoff: “Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells”, Cell Death Differ, Vol. 12, (2005), pp. 38–51.
  • [11] D. Arnold-Schild, D. Hanau, D. Spehner, C. Schmid, H.G. Rammensee, H. de la Salle and H. Schild: “Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells”, J. Immunol., Vol. 162, (1999), pp. 3757–3760.
  • [12] S. Basu, R.J. Binder, T. Ramalingam and P.K. Srivastava: “CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin”, Immunity., Vol. 14, (2001), pp. 303–313. [Crossref]
  • [13] R.J. Binder, D.K. Han and P.K. Srivastava: “CD91: a receptor for heat shock protein gp96”, Nat. Immunol., Vol. 1, (2000), pp. 151–155.
  • [14] R.J. Binder, R. Vatner and P. Srivastava: “The heat-shock protein receptors: some answers and more questions”, Tissue Antigens, Vol. 64, (2004), pp. 442–451.
  • [15] H. Sondermann, T. Becker, M. Mayhew, F. Wieland and F.U. Hartl: “Characterization of a receptor for heat shock protein 70 on macrophages and monocytes”, Biol. Chem., Vol. 381, (2000), pp. 1165–1174.
  • [16] R.J. Binder, N.E. Blachere and P.K. Srivastava: “Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented effciently by major histocompatibility complex I molecules”, J. Biol. Chem., Vol. 276, (2001), pp. 17163–17171.
  • [17] A.D. Doody, J.T. Kovalchin, M.A. Mihalyo, A.T. Hagymasi, C.G. Drake and A.J. Adler: “Glycoprotein 96 can chaperone both MHC class I-and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function”, J. Immunol., Vol. 172, (2004), pp. 6087–6092.
  • [18] H. Schild, D. Arnold-Schild, E. Lammert and H.G. Rammensee: “Stress proteins and immunity mediated by cytotoxic T lymphocytes”, Curr. Opin. Immunol., Vol. 11, (1999), pp. 109–113. [Crossref]
  • [19] H. Singh-Jasuja, R.E. Toes, P. Spee, C. Münz, N. Hilf, S.P. Schoenberger, P. Ricciardi-Castagnoli, J. Neefjes, H.G. Rammensee, D. Arnold-Schild and H. Schild: “Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis”, J. Exp. Med., Vol. 191, (2000), pp. 1965–1974.
  • [20] P.K. Srivastava, A. Menoret, S. Basu, R.J. Binder and K.L. McQuade: “Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world”, Immunity, Vol. 8, (1998), pp. 657–665. [Crossref]
  • [21] A.D. Wells and M. Malkovsky: “Heat shock proteins, tumor immunogenicity and antigen presentation: an integrated view”, Immunol. Today, Vol. 21, (2000), pp. 129–132.
  • [22] R.J. Binder, M.L. Harris, A. Menoret and P.K. Srivastava: “Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells”, J. Immunol., Vol. 165, (2000), pp. 2582–2587. [Crossref]
  • [23] C. Habich, K. Baumgart, H. Kolb and V. Burkart: “The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins”, J. Immunol., Vol. 168, (2002), pp. 569–576. [Crossref]
  • [24] R.M. Vabulas, P. Ahmad-Nejad, C. Da Costa, T. Miethke, C.J. Kirschning, H. Hacker and H. Wagner: “Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells”, J. Biol. Chem., Vol. 276, (2001), pp. 31332–31339.
  • [25] A. Asea, S.K. Kraeft, E.A. Kurt-Jones, M.A. Stevenson, L.B. Chen, R.W. Finberg, G.C. Koo and S.K. Calderwood: “HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine”, Nat. Med., Vol. 6, (2000), pp. 435–442.
  • [26] A. Asea, M. Rehli, E. Kabingu, J.A. Boch, O. Bare, P.E. Auron, M.A. Stevenson and S.K. Calderwood: “Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4”, J. Biol. Chem., Vol. 277, (2002), pp. 15028–15034. [Crossref]
  • [27] R.M. Vabulas, S. Braedel, N. Hilf, H. Singh-Jasuja, S. Herter, P. Ahmad-Nejad, C.J. Kirschning, C. Da Costa, H.G. Rammensee, H. Wagner and H. Schild: “The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway”, J. Biol. Chem., Vol. 277, (2002), pp. 20847–20853. [Crossref]
  • [28] T. Becker, F.U. Hartl and F. Wieland: “CD40, an extracellular receptor for binding and uptake of Hsp70 peptide complexes”, J. Cell Biol., Vol. 158, (2002), pp. 1277–1285.
  • [29] Y. Wang, C.G. Kelly, J.T. Karttunen, T. Whittall, P.J. Lehner, L. Duncan, P. MacAry, J.S. Younson, M. Singh, W. Oehlmann, G. Cheng, L. Bergmeier and T. Lehner: “CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines”, Immunity, Vol. 15, (2001), pp. 971–983. [Crossref]
  • [30] T. Nakamura, J. Hinagata, T. Tanaka, T. Imanishi, Y. Wada, T. Kodama and T. Doi: “HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors”, Biochem. Biophys. Res. Commun., Vol. 290, (2002), pp. 858–864.
  • [31] R.J. Binder, D. Karimeddini and P.K. Srivastava: “Adjuvanticity of alpha 2-macroglobulin, an independent ligand for the heat shock protein receptor CD91”, J. Immunol., Vol. 166, (2001), pp. 4968–4972.
  • [32] R.J. Binder and P.K. Srivastava: “Essential role of CD91 in re-presentation of gp96-chaperoned peptides”, Proc. Natl. Acad. Sci. U. S. A, Vol. 101, (2004), pp. 6128–6133.
  • [33] B. Berwin, J.P. Hart, S. Rice, C. Gass, S.V. Pizzo, S.R. Post and C.V. Nicchitta: “Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells”, EMBO J., Vol. 22, (2003), pp. 6127–6136. [Crossref]
  • [34] R. Haworth, N. Platt, S. Keshav, D. Hughes, E. Darley, H. Suzuki, Y. Kurihara, T. Kodama and S. Gordon: “The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock”, J. Exp. Med., Vol. 186, (1997), pp. 1431–1439. [Crossref]
  • [35] Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami-Honda, L. Goetsch, T. Sawamura, J. Bonnefoy and P. Jeannin: “Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation”, Immunity, Vol. 17, (2002), pp. 353–362. [Crossref]
  • [36] J.R. Theriault, S.S. Mambula, T. Sawamura, M.A. Stevenson and S.K. Calderwood: “Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells”, FEBS Lett., Vol. 579, (2005), pp. 1951–1960.
  • [37] P. Matzinger: “The danger model: a renewed sense of self”, Science, Vol. 296, (2002), pp. 301–305.
  • [38] M.A. Bausero, R. Gastpar, G. Multhoff and A. Asea: “Alternative mechanism by which IFN-γ enhances tumor recognition: active release of Hsp72”, J. Immunol., Vol. 175, (2005), pp. 2900–2912.
  • [39] R. Gastpar, M. Gehrmann, M.A. Bausero, A. Asea, C. Gross, J.A. Schroeder and G. Multhoff: “Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells”, Cancer Res., Vol. 65, (2005), pp. 5238–5247. [Crossref]
  • [40] G.I. Lancaster and M.A. Febbraio: “Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins”, J. Biol. Chem., Vol. 280, (2005), pp. 23349–23355.
  • [41] T. Lehner, Y. Wang, T. Whittall, E. McGowan, C.G. Kelly and M. Singh: “Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity”, Biochem. Soc. Trans., Vol. 32, (2004), pp. 629–632.
  • [42] Y. Wang, C.G. Kelly, M. Singh, E.G. McGowan, A.S. Carrara, L.A. Bergmeier and T. Lehner: “Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70”, J. Immunol., Vol. 169, (2002), pp. 2422–2429.
  • [43] O.S. Birk, S.L. Gur, D. Elias, R. Margalit, F. Mor, P. Carmi, J. Bockova, D.M. Altmann and I.R. Cohen: “The 60-kDa heat shock protein modulates allograft rejection”, Proc. Natl. Acad. Sci. U. S. A, Vol. 96, (1999), pp. 5159–5163. [Crossref]
  • [44] G. Trinchieri: “Biology of natural killer cells”, Adv. Immunol., Vol. 47, (1989), pp. 187–376.
  • [45] L.L. Lanier, J.J. Ruitenberg and J.H. Phillips: “Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes”, J. Immunol., Vol. 141, (1988), pp. 3478–3485.
  • [46] L.L. Lanier, B. Corliss, J. Wu and J.H. Phillips: “Association of DAP12 with activating CD94/NKG2C NK cell receptors”, Immunity, Vol. 8, (1998), pp. 693–701. [Crossref]
  • [47] A. Moretta, C. Bottino, M. Vitale, D. Pende, C. Cantoni, M.C. Mingari, R. Biassoni and L. Moretta: “Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis”, Annu. Rev. Immunol., Vol. 19, (2001), pp. 197–223. [Crossref]
  • [48] E.O. Long: “Regulation of immune responses through inhibitory receptors”, Annu. Rev. Immunol., Vol. 17, (1999), pp. 875–904. [Crossref]
  • [49] H.G. Ljunggren and K. Karre: “In search of the ‘missing self’: MHC molecules and NK cell recognition”, Immunol. Today, Vol. 11, (1990), pp. 237–244.
  • [50] S. Bauer, V. Groh, J. Wu, A. Steinle, J.H. Phillips, L.L. Lanier and T. Spies: “Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA”, Science, Vol. 285, (1999), pp. 727–729.
  • [51] D. Cosman, J. Mullberg, W Fanslow, R. Armitage, W. Chin and I. Cassiano: “The human cytomegalivirus (HCMV) glycoprotein, UL16, binds to the MHC class Irelated protein, MICB/PERB11, and to two novel, MHC class I related molecules ULBP1 and ULBP2”, FASEB J., Vol. 14, (2004), pp. 1018–1023.
  • [52] C. Bottino, L. Moretta and A. Moretta: “NK cell activating receptors and tumor recognition in humans”, Curr. Top. Microbiol. Immunol., Vol. 298, (2006), pp. 175–182.
  • [53] J.S. Orange and Z.K. Ballas: “Natural killer cells in human health and disease”, Clin. Immunol., Vol. 118, (2006), pp. 1–10.
  • [54] S.S. Farag, T.A. Fehniger, L. Ruggeri, A. Velardi and M.A. Caligiuri: “Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect”, Blood, Vol. 100, (2002), pp. 1935–1947. [Crossref]
  • [55] V.M. Braud, D.S. Allan, C.A. O’Callaghan, K. Soderstrom, A. D’Andrea, G.S. Ogg, S. Lazetic, N.T. Young, J.I. Bell, J.H. Phillips, L.L. Lanier and A.J. McMichael: “HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C”, Nature, Vol. 391, (1998), pp. 795–799.
  • [56] J. Michaëlsson, C. Teixeira de Matos, A. Achour, L.L. Lanier, K. Kaerre and K. Söderström: “A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition”, J. Exp. Med., Vol. 196, (2002), pp. 1403–1414. [Crossref]
  • [57] H.D. Hickman-Miller and W.H. Hildebrand: “The immune response under stress: the role of HSP-derived peptides”, Trends Immunol., Vol. 25, (2004), pp. 427–433. [Crossref]
  • [58] C. Gross, D. Hansch, R. Gastpar and G. Multhoff: “Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94”, Biol. Chem., Vol. 384, (2003), pp. 267–279.
  • [59] C. Gross, I.G. Schmidt-Wolf, S. Nagaraj, R. Gastpar, J. Ellwart, L.A. Kunz-Schughart and G. Multhoff: “Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells”, Cell Stress Chaperones, Vol. 8, (2003), pp. 348–360.
  • [60] C. Botzler, G. Li, R.D. Issels and G. Multhoff: “Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response”, Cell Stress Chaperones, Vol. 3, (1998), pp. 6–11.
  • [61] G. Multhoff, L. Mizzen, C.C. Winchester, C.M. Milner, S. Wenk, G. Eissner, H.H. Kampinga, B. Laumbacher and J. Johnson: “Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells”, Exp. Hematol., Vol. 27, (1999), pp. 1627–1636.
  • [62] C. Massa, C. Guiducci, I. Arioli, M. Parenza, M.P. Colombo and C. Melani: “Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70”, Cancer Res., Vol. 64, (2004), pp. 1502–1508. [Crossref]
  • [63] G. Multhoff, K. Pfister, C. Botzler, A. Jordan, R. Scholz, H. Schmetzer, R. Burgstahler and W. Hiddemann: “Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors”, Int. J. Cancer, Vol. 88, (2000), pp. 791–797.
  • [64] C. Gross, W. Koelch, A. DeMaio, N. Arispe and G. Multhoff: “Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B”, J. Biol. Chem., Vol. 278, (2003), pp. 41173–41181. [Crossref]
  • [65] X. Chen, Q. Tao, H. Yu, L. Zhang and X. Cao: “Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity”, Immunol. Lett., Vol. 84, (2002), pp. 81–87. [Crossref]
  • [66] G. Multhoff, C. Botzler, M. Wiesnet, E. Muller, T. Meier, W. Wilmanns and R.D. Issels: “A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells”, Int. J. Cancer, Vol. 61, (1995), pp. 272–279.
  • [67] G. Multhoff, C. Botzler, M. Wiesnet, G. Eissner and R. Issels: “CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells”, Blood, Vol. 86, (1995), pp. 1374–1382.
  • [68] M. Gehrmann, H. Schmetzer, G. Eissner, T. Haferlach, W. Hiddemann and G. Multhoff: “Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells”, Haematologica, Vol. 88, (2003), pp. 474–476.
  • [69] C. Botzler, H.J. Kolb, R.D. Issels and G. Multhoff: “Noncytotoxic alkyllysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer (NK) cells”, Int. J. Cancer, Vol. 65, (1996), pp. 633–638.
  • [70] M. Gehrmann, K. Pfister, P. Hutzler, R. Gastpar, B. Margulis and G. Multhoff: “Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels”, Biol. Chem., Vol. 383, (2002), pp. 1715–1725.
  • [71] M. Gehrmann, M. Brunner, K. Pfister, A. Reichle, E. Kremmer and G. Multhoff: “Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs”, Clin. Cancer Res., Vol. 10, (2004), pp. 3354–3364.
  • [72] V. Milani and E. Noessner: “Effects of thermal stress on tumor antigenicity and recognition by immune effector cells”, Cancer Immunol. Immunother., Vol. 55, (2006), pp. 312–319. [Crossref]
  • [73] M. Korbelik, J. Sun and I. Cecic: “Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response”, Cancer Res., Vol. 65, (2005), pp. 1018–1026.
  • [74] B.K. Shin, H. Wang, A.M. Yim, F. Le Naour, F. Brichory, J.H. Jang, R. Zhao, E. Puravs, J. Tra, C.W. Michael, D.E. Misek and S.M. Hanash: “Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function”, J. Biol. Chem., Vol. 278, (2003), pp. 7607–7616. [Crossref]
  • [75] L. Pilla, P. Squarcina, J. Coppa, V. Mazzaferro, V. Huber, D. Pende, C. Maccalli, G. Sovena, L. Mariani, C. Castelli, G. Parmiani and L. Rivoltini: “Natural killer and NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96”, Cancer Res., Vol. 65, (2005), pp. 3942–3949. [Crossref]
  • [76] J.A. Trapani, M.J. Smyth, V.A. Apostolidis, M. Dawson and K.A. Browne: “Granule serine proteases are normal nuclear constituents of natural killer cells”, J. Biol. Chem., Vol. 269, (1994), pp. 18359–18365.
  • [77] R. Dressel, S.M. Raja, S. Höning, T. Seidler, C.J. Froelich, K. von Figura and E. Günther: “Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells”, J. Biol. Chem., Vol. 279, (2004), pp. 20200–20210.
  • [78] F.C. Kurschus, R. Bruno, E. Fellows, C.S. Falk and D.E. Jenne: “Membrane receptors are not required to deliver granzyme B during killer cell attack”, Blood, Vol. 105, (2005), pp. 2049–2058. [Crossref]
  • [79] J.A. Trapani, V.R. Sutton, K.Y. Thia, Y.Q. Li, C.J. Froelich, D.A. Jans, M.S. Sandrin and K.A. Browne: “A clathrin/dynamin-and mannose-6-phosphate receptorindependent pathway for granzyme B-induced cell death”, J. Cell Biol., Vol. 160, (2003), pp. 223–233. [Crossref]
  • [80] G. Berke: “The CTL’s kiss of death”, Cell, Vol. 81, (1995), pp. 9–12. [Crossref]
  • [81] C.J. Froelich, V.M. Dixit and X. Yang: “Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases”, Immunol. Today, Vol. 19, (1998), pp. 30–36.
  • [82] L. Shi, C.M. Kam, J.C. Powers, R. Aebersold and A.H. Greenberg: “Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions”, J. Exp. Med., Vol. 176, (1992), pp. 1521–1529. [Crossref]
  • [83] L. Shi, R.P. Kraut, R. Aebersold and A.H. Greenberg: “A natural killer cell granule protein that induces DNA fragmentation and apoptosis”, J. Exp. Med., Vol. 175, (1992), pp. 553–566. [Crossref]
  • [84] S. Shresta, T.A. Graubert, D.A. Thomas, S.Z. Raptis and T.J. Ley: “Granzyme A initiates an alternative pathway for granule-mediated apoptosis”, Immunity, Vol. 10, (1999), pp. 595–605. [Crossref]
  • [85] J. Tschopp and M. Nabholz: “Perforin-mediated target cell lysis by cytolytic T lymphocytes”, Annu. Rev. Immunol., Vol. 8, (1990), pp. 279–302. http://dx.doi.org/10.1146/annurev.iy.08.040190.001431[Crossref]
  • [86] P.J. Beresford, M. Jaju, R.S. Friedman, M.J. Yoon and J. Liebermann: “A role for heat shock protein 27 in CTL-mediated cell death”, J. Immunol., Vol. 161, (1998), pp. 161–167.
  • [87] N. Arispe and A. De Maio: “ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes”, J. Biol. Chem., Vol. 275, (2000), pp. 30839–30843.
  • [88] N. Arispe, M. Doh, O. Simakova, B. Kurganov and A. De Maio: “Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability”, FASEB J., Vol. 18, (2004), pp. 1636–1645. [Crossref]
  • [89] A.H. Broquet, G. Thomas, J. Masliah, G. Trugnan and M. Bachelet: “Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release”, J. Biol. Chem., Vol. 278, (2003), pp. 21601–21606.
  • [90] P.J. Kuppen, A. Gorter, M. Hagenaars, L.E. Jonges, K.M. Giezeman-Smits, J.F. Nagelkerke, G. Fleuren and C.J. van de Velde: “Role of NK cells in adoptive immunotherapy of metastatic colorectal cancer in a syngeneic rat model”, Immunol. Rev., Vol. 184, (2001), pp. 236–243.
  • [91] S. Yasumura, W.C. Lin, H. Hirabayashi, N.L. Vujanovic, R.B. Herberman and T.L. Whiteside: “Immunotherapy of liver metastases of human gastric carcinoma with interleukin 2-activated natural killer cells”, Cancer Res., Vol. 54, (1994), pp. 3808–3816.
  • [92] N.L. Vujanovic, S. Yasumura, H. Hirabayashi, W.C. Lin, S. Watkins, R.B. Herberman and T.L. Whiteside: “Antitumor activities of subsets of human IL-2-activated natural killer cells in solid tissues”, J. Immunol., Vol. 154, (1995), pp. 281–289.
  • [93] R.E. Schwarz, N.L. Vujanovic and J.C. Hiserodt: “Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic”, Cancer Res., Vol. 49, (1989), pp. 1441–1446.
  • [94] T.L. Whiteside, M.W. Sung, S. Nagashima, K. Chikamatsu, K. Okada and N.L. Vujanovic: “Human tumor antigen-specific T lymphocytes and interleukin-2-activated natural killer cells: comparisons of antitumor effects in vitro and in vivo”, Clin. Cancer Res., Vol. 4, (1998), pp. 1135–1145.
  • [95] M. Zeis, L. Uharek, B. Glass, T. Gaska, W. Gassmann and W. Mueller-Ruchholtz: “Induction of graft-versus-leukemia (GVL) activity in murine leukemia models after IL-2 pretreatment of syngeneic and allogeneic bone marrow grafts”, Bone Marrow Transplant., Vol. 14, (1994), pp. 711–715.
  • [96] L. Uharek, M. Zeis, B. Glass, J. Steinmann, P. Dreger, W. Gassmann, N. Schmitz and W. Muller-Ruchholtz: “High lytic activity against human leukemia cells after activation of allogeneic NK cells by IL-12 and IL-2”, Leukemia, Vol. 10, (1996), pp. 1758–1764.
  • [97] M. Zeis, L. Uharek, B. Glass, J. Steinmann, P. Dreger, W. Gassmann and N. Schmitz: “Allogeneic MHC-mismatched activated natural killer cells administered after bone marrow transplantation provide a strong graft-versus-leukaemia effect in mice”, Br. J. Haematol., Vol. 96, (1997), pp. 757–761. [Crossref]
  • [98] L. Uharek, B. Glass, T. Gaska, M. Zeiss, W. Gassmann, H. Loffler and W. Muller-Ruchholtz: “Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model”, Bone Marrow Transplant., Vol. 12, Suppl 3, (1993), pp. S57–S60.
  • [99] M. Zeis, L. Uharek, B. Glass, T. Gaska, J. Steinmann, W. Gassmann, H. Loffler and W. Muller-Ruchholtz: “Allogeneic NK cells as potent antileukemic effector cells after allogeneic bone marrow transplantation in mice”, Transplantation, Vol. 59, (1995), pp. 1734–1736. [Crossref]
  • [100] O. Penack, C. Gentilini, L. Fischer, A.M. Asemissen, C. Scheibenbogen, E. Thiel and L. Uharek: “CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets”, Leukemia, Vol. 19, (2005), pp. 835–840. [Crossref]
  • [101] S. Brandau, J. Riemensberger, M. Jacobsen, D. Kemp, W. Zhao, X. Zhao, D. Jocham, T.L. Ratliff and A. Bohle: “NK cells are essential for effective BCG immunotherapy”, Int. J. Cancer, Vol. 92, (2001), pp. 697–702.
  • [102] S. Brandau and A. Bohle: “Activation of natural killer cells by Bacillus Calmette-Guerin”, Eur. Urol., Vol. 39, (2001), pp. 518–524.
  • [103] T. Tonn, S. Becker, R. Esser, D. Schwabe and E. Seifried: “Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92”, J. Hematother. Stem Cell Res., Vol. 10, (2001), pp. 535–544. [Crossref]
  • [104] U. Koehl, J. Sorensen, R. Esser, S. Zimmermann, H.P. Gruttner, T. Tonn, C. Seidl, E. Seifried, T. Klingebiel and D. Schwabe: “IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation”, Blood Cells Mol. Dis., Vol. 33, (2004), pp. 261–266.
  • [105] U. Koehl, R. Esser, S. Zimmermann, T. Tonn, R. Kotchetkov, T. Bartling, J. Sorensen, H.P. Gruttner, P. Bader, E. Seifried, H. Martin, P. Lang, J.R. Passweg, T. Klingebiel and D. Schwabe: “Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children”, Klin. Padiatr., Vol. 217, (2005), pp. 345–350.
  • [106] T.L. Whiteside, N.L. Vujanovic and R.B. Herberman: “Natural killer cells and tumor therapy”, Curr. Top. Microbiol. Immunol., Vol. 230, (1998), pp. 221–244.
  • [107] H. Rabinowich, D. Vitolo, S. Altarac, R.B. Herberman and T.L. Whiteside: “Role of cytokines in the adoptive immunotherapy of an experimental model of human head and neck cancer by human IL-2-activated natural killer cells”, J. Immunol., Vol. 149, (1992), pp. 340–349.
  • [108] R.B. Herberman: “Cancer immunotherapy with natural killer cells”, Semin. Oncol., Vol. 29, (2002), pp. 27–30.
  • [109] P.H. Basse, T.L. Whiteside, W. Chambers and R.B. Herberman: “Therapeutic activity of NK cells against tumors”, Int. Rev. Immunol., Vol. 20, (2001), pp. 439–501. [Crossref]
  • [110] K. Koda, N. Saito, K. Oda, K. Seike, E. Kondo, M. Ishizuka, N. Takiguchi and M. Miyazaki: “Natural killer cell activity and distant metastasis in rectal cancers treated surgically with and without neoadjuvant chemoradiotherapy”, J. Am. Coll. Surg., Vol. 197, (2003), pp. 254–260.
  • [111] E. Kondo, K. Koda, N. Takiguchi, K. Oda, K. Seike, M. Ishizuka and M. Miyazaki: “Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer”, Dig. Surg., Vol. 20, (2003), pp. 445–451.
  • [112] P.A. Albertsson, P.H. Basse, M. Hokland, R.H. Goldfarb, J.F. Nagelkerke, U. Nannmark and P.J. Kuppen: “NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity”, Trends Immunol., Vol. 24, (2003), pp. 603–609. [Crossref]
  • [113] S.A. Rosenberg, M.T. Lotze, J.C. Yang, S.L. Topalian, A.E. Chang, D.J. Schwartzentruber, P. Aebersold, S. Leitman, W.M. Linehan, C.A. Seipp, D.E. White and S.M. Steinberg: “Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer”, J. Natl. Cancer Inst., Vol. 85, (1993), pp. 622–632. [Crossref]
  • [114] S.A. Rosenberg, J.C. Yang, D.J. Schwartzentruber, P. Hwu, F.M. Marincola, S.L. Topalian, C.A. Seipp, J.H. Einhorn, D.E. White and S.M. Steinberg: “Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon alfa-2b”, J. Clin. Oncol., Vol. 17, (1999), pp. 968–975.
  • [115] J.E. Cortes, H.M. Kantarjian, S. O’Brien, F. Giles, M.J. Keating, E.J. Freireich and E.H. Estey: “A pilot study of interleukin-2 for adult patients with acute myelogenous leukemia in first complete remission”, Cancer, Vol. 85, (1999), pp. 1506–1513. [Crossref]
  • [116] R.J. Soiffer, C. Murray, C. Shapiro, H. Collins, S. Chartier, S. Lazo and J. Ritz: “Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2”, Clin. Cancer Res., Vol. 2, (1996), pp. 493–499.
  • [117] C. Moser, C. Schmidbauer, U. Gürtler, C. Gross, M. Gehrmann, G. Thonigs, K. Pfister and G. Multhoff: “Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells”, Cell Stress. Chaperones., Vol. 7, (2002), pp. 365–373. [Crossref]
  • [118] S. Stangl, A. Wortmann, U. Guertler and G. Multhoff: “Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells”, J. Immunol., Vol. 176, (2006), pp. 6270–6276.
  • [119] Q. Yang, M.E. Hokland, J.L. Bryant, Y. Zhang, U. Nannmark, S.C. Watkins, R.H. Goldfarb, R.B. Herberman and P.H. Basse: “Tumor-localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases”, Int. J. Cancer, Vol. 105, (2003), pp. 512–519.
  • [120] S.W. Krause, R. Gastpar, R. Andreesen, C. Gross, H. Ullrich, G. Thonigs, K. Pfister and G. Multhoff: “Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial”, Clin. Cancer Res., Vol. 10, (2004), pp. 3699–3707.
  • [121] Ö. Canöz, O. Belenli and T.E. Patiroglu: “General features of gastric carcinomas and comparison of HSP70 and NK cell immunoreactivity with prognostic factors”, Pathol. Oncol. Res., Vol. 8, (2002), pp. 262–269. [Crossref]
  • [122] M. deMagalhaes-Silverman, A. Donnenberg, B. Lembersky, E. Elder, J. Lister, W. Rybka, T. Whiteside and E. Ball: “Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer”, J. Immunother., Vol. 23, (2000), pp. 154–160. [Crossref]
  • [123] P.H. Basse, T.L. Whiteside and R.B. Herberman: “Use of activated natural killer cells for tumor immunotherapy in mouse and human”, Methods Mol. Biol., Vol. 121, (2000), pp. 81–94.
  • [124] C. Frohn, C. Doehn, C. Durek, A. Bohle, P. Schlenke, D. Jocham and H. Kirchner: “Feasibility of the adoptive transfusion of allogenic human leukocyte antigen-matched natural killer cells in patients with renal cell carcinoma”, J. Immunother., Vol. 23, (2000), pp. 499–504. [Crossref]
  • [125] T. Hercend, F. Farace, D. Baume, F. Charpentier, J.P. Droz, F. Triebel and B. Escudier: “Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: a feasibility trial in metastatic renal cell carcinoma”, J. Biol. Response Mod., Vol. 9, (1990), pp. 546–555.
  • [126] E. Ishikawa, K. Tsuboi, K. Saijo, H. Harada, S. Takano, T. Nose and T. Ohno: “Autologous natural killer cell therapy for human recurrent malignant glioma”, Anticancer Res., Vol. 24, (2004), pp. 1861–1871.
  • [127] J.R. Passweg, M. Stern, U. Koehl, L. Uharek and A. Tichelli: “Use of natural killer cells in hematopoetic stem cell transplantation”, Bone Marrow Transplant., Vol. 35, (2005), pp. 637–643.
  • [128] F. Aversa, A. Terenzi, R. Felicini, A. Carotti, F. Falcinelli, A. Tabilio, A. Velardi and M.F. Martelli: “Haploidentical stem cell transplantation for acute leukemia”, Int. J. Hematol., Vol. 76, Suppl 1, (2002), pp. 165–168. http://dx.doi.org/10.1007/BF03165238[Crossref]
  • [129] C.Y. Koh, L.A. Welniak and W.J. Murphy: “Adoptive cellular immunotherapy: NK cells and bone marrow transplantation”, Histol. Histopathol., Vol. 15, (2000), pp. 1201–1210.
  • [130] R.J. Jones: “Biology and treatment of chronic myeloid leukemia”, Curr. Opin. Oncol., Vol. 9, (1997), pp. 3–7. [Crossref]
  • [131] E. Jourdan, D. Maraninchi, J. Reiffers, E. Gluckman, B. Rio, J.P. Jouet, M. Michallet, L. Molina, E. Archimbaud, J.L. Harousseau, N. Ifrah, M. Attal, F. Guilhot, M. Kuentz, D. Guyotat, J.L. Pico, C. Dauriac, M. Legros, F. Dreyfus, P. Bordigoni, V. Leblond, N. Gratecos, B. Varet, C. Auzanneau and D. Blaise: “Early allogeneic transplantation favorably influences the outcome of adult patients suffering from acute myeloid leukemia. Societe Francaise de Greffe de Moelle (SFGM)”, Bone Marrow Transplant., Vol. 19, (1997), pp. 875–881.
  • [132] L.F. Verdonck, A.W. Dekker, H.M. Lokhorst, E.J. Petersen and H.K. Nieuwenhuis: “Allogeneic versus autologous bone marrow transplantation for refractory and recurrent low-grade non-Hodgkin’s lymphoma”, Blood, Vol. 90, (1997), pp. 4201–4205.
  • [133] K.G. Lerner, G.F. Kao, R. Storb, C.D. Buckner, R.A. Clift and E.D. Thomas: “Histopathology of graft-vs.-host reaction (GvHR) in human recipients of marrow from HL-A-matched sibling donors”, Transplant. Proc., Vol. 6, (1974), pp. 367–371.
  • [134] H.J. Kolb and E. Holler: “Adoptive immunotherapy with donor lymphocyte transfusions”, Curr. Opin. Oncol., Vol. 9, (1997), pp. 139–145. http://dx.doi.org/10.1097/00001622-199703000-00006[Crossref]
  • [135] L.S. de, V, N. Riche, G. Dorothe and M. Bruley-Rosset: “CD8+ cytotoxic T cell repertoire implicated in grafts-versus-leukemia effect in a murine bone marrow transplantation model”, Bone Marrow Transplant., Vol. 23, (1999), pp. 951–958.
  • [136] E. Holler, B. Ertl, R. Hintermeier-Knabe, M.G. Roncarolo, G. Eissner, F. Mayer, P. Fraunberger, U. Behrends, W. Pfannes, H.J. Kolb and W. Wilmanns: “Inflammatory reactions induced by pretransplant conditioning - an alternative target for modulation of acute GvHD and complications following allogeneic bone marrow transplantation?”, Leuk. Lymphoma, Vol. 25, (1997), pp. 217–224.
  • [137] C. Ibisch, G. Gallot, R. Vivien, E. Diez, F. Jotereau, R. Garand and H. Vie: “Recognition of leukemic blasts by HLA-DPB1-specific cytotoxic T cell clones: a perspective for adjuvant immunotherapy post-bone marrow transplantation”, Bone Marrow Transplant., Vol. 23, (1999), pp. 1153–1159.
  • [138] B.D. Johnson, E.E. Becker and R.L. Truitt: “Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets”, Biol. Blood Marrow Transplant., Vol. 5, (1999), pp. 123–132.
  • [139] S. Slawin, E. Naparstek, A. Nagler, A. Ackerstein, J. Kapelushnik and R. Or: “Allogeneic cell therapy for relapsed leukemia after bone marrow transplantation with donor peripheral blood lymphocytes”, Exp. Hematol., Vol. 23, (1995), pp. 1553–1562.
  • [140] M. Zeis, L. Uharek, B. Glass, W. Vosskotter, P. Dreger, N. Schmitz and J. Steinmann: “Eradication of residual disease by administration of leukemia-specific T cells after experimental allogeneic bone marrow transplantation”, Exp. Hematol., Vol. 26, (1998), pp. 1068–1073.
  • [141] Y. Yan, P. Steinherz, H.G. Klingemann, D. Dennig, B.H. Childs, J. McGuirk and R.J. O’Reilly: “Antileukemia activity of a natural killer cell line against human leukemias”, Clin. Cancer Res., Vol. 4, (1998), pp. 2859–2868.
  • [142] B. Glass, L. Uharek, M. Zeis, H. Loeffler, W. Mueller-Ruchholtz and W. Gassmann: “Graft-versus-leukaemia activity can be predicted by natural cytotoxicity against leukaemia cells”, Br. J. Haematol., Vol. 93, (1996), pp. 412–420. [Crossref]
  • [143] S.S. Farag, T. Fehniger, L. Ruggeri, A. Velardi and M.A. Caligiuri: “Natural killer cells: biology and application in stem-cell transplantation”, Cytotherapy, Vol. 4, (2002), pp. 445–446. [Crossref]
  • [144] L. Ruggeri, M. Capanni, M. Casucci, I. Volpi, A. Tosti, K. Perruccio, E. Urbani, R.S. Negrin, M.F. Martelli and A. Velardi: “Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation”, Blood, Vol. 94, (1999), pp. 333–339.
  • [145] L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M.F. Martelli and A. Velardi: “Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants”, Science, Vol. 295, (2002), pp. 2097–2100.
  • [146] L. Ruggeri, M. Capanni, M.F. Martelli and A. Velardi: “Cellular therapy: exploiting NK cell alloreactivity in transplantation”, Curr. Opin. Hematol., Vol. 8, (2001), pp. 355–359. [Crossref]
  • [147] M.A. Caligiuri, A. Velardi, D.A. Scheinberg and I.M. Borrello: “Immunotherapeutic approaches for hematologic malignancies”, Hematology. Am. Soc. Hematol. Educ. Program, (2004), pp. 337-353. [Crossref]
  • [148] A. Velardi, L. Ruggeri, M. Capanni, A. Mancusi, K. Perruccio, F. Aversa and M.F. Martelli: “Immunotherapy with alloreactive natural killer cells in haploidentical haematopoietic transplantation”, Hematol. J., Vol. 5, Suppl 3, (2004), pp. S87–S90.
  • [149] S. Arai and H.G. Klingemann: “Natural killer cells: can they be useful as adoptive immunotherapy for cancer?”, Expert. Opin. Biol. Ther., Vol. 5, (2005), pp. 163–172.
  • [150] H.G. Klingemann: “Relevance and potential of natural killer cells in stem cell transplantation”, Biol. Blood Marrow Transplant., Vol. 6, (2000), pp. 90–99.
  • [151] H.G. Klingemann: “Natural killer cell-based immunotherapeutic strategies”, Cytotherapy, Vol. 7, (2005), pp. 16–22. [Crossref]
  • [152] I.A. Voutsadakis: “NK cells in allogeneic bone marrow transplantation”, Cancer Immunol. Immunother., Vol. 52, (2003), pp. 525–534. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11536-006-0023-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.