PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 9 | 637-653
Tytuł artykułu

A shifted Jacobi collocation algorithm for wave type equations with non-local conservation conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
9
Strony
637-653
Opis fizyczny
Daty
wydano
2014-09-01
online
2014-07-31
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt , melkawy@yahoo.com
Bibliografia
  • [1] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, New York, 2006)
  • [2] E. H. Doha, A.H. Bhrawy, D. Baleanu, R.M. Hafez, Appl. Numer. Math. 77, 43 (2014) http://dx.doi.org/10.1016/j.apnum.2013.11.003[Crossref]
  • [3] M. Tatari, M. Haghighi, Appl. Math. Model. 38, 1351 (2014) http://dx.doi.org/10.1016/j.apm.2013.08.008[Crossref]
  • [4] A. H. Bhrawy, Appl. Math. Comput. 222, 255 (2013) http://dx.doi.org/10.1016/j.amc.2013.07.056[Crossref]
  • [5] H. Wang, Comput. Phys. Commun. 181, 325 (2010) http://dx.doi.org/10.1016/j.cpc.2009.10.007[Crossref]
  • [6] S. A. Khuri, A. Sayfy, Appl. Math. Comput. 216, 1047 (2010) http://dx.doi.org/10.1016/j.amc.2010.01.122[Crossref]
  • [7] A. H. Bhrawy, M.A. Alghamdi, Boundary Value Problems 2012, 62 (2012) http://dx.doi.org/10.1186/1687-2770-2012-62[Crossref]
  • [8] E. H. Doha, A.H. Bhrawy, R.M. Hafez, M.A. Abdelkawy, Appl. Math. Inf. Sci. 8, 535 (2014) http://dx.doi.org/10.12785/amis/080211[Crossref]
  • [9] A. Saadatmandi, Appl. Math. Model. 38 1365 (2014) http://dx.doi.org/10.1016/j.apm.2013.08.007
  • [10] E. H. Doha, A.H. Bhrawy, M.A. Abdelkawy, R.M. Hafez, Centr. Eur. J. Phys. 12, 111 (2014) http://dx.doi.org/10.2478/s11534-014-0429-z[Crossref]
  • [11] X. Ma, C. Huang, Appl. Math. Model. 38, 1434 (2014) http://dx.doi.org/10.1016/j.apm.2013.08.013[Crossref]
  • [12] E. H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Centr. Eur. J. Phys. 11, 1494 (2013) http://dx.doi.org/10.2478/s11534-013-0264-7[Crossref]
  • [13] R. E. Ewing, T. Lin, Adv. Water Resour. 14, 89 (1991) http://dx.doi.org/10.1016/0309-1708(91)90055-S[Crossref]
  • [14] L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani, Comput. Visual. Sci. 2, 75 (1999) http://dx.doi.org/10.1007/s007910050030[Crossref]
  • [15] D. Bahuguna, R.K. Shukla, Nonlinear Dynam. Syst. Theor. 5, 345 (2005)
  • [16] J. Dabas, D. Bahuguna, Math. Comput. Model. 50, 123 (2009) http://dx.doi.org/10.1016/j.mcm.2009.03.002[Crossref]
  • [17] P. Shi, SIAM J. Numer. Anal. 24, 46 (1993) http://dx.doi.org/10.1137/0524004[Crossref]
  • [18] J. Lee, R. Sakthivel, Pramana 76, 819 (2011) http://dx.doi.org/10.1007/s12043-011-0105-4[Crossref]
  • [19] L. Girgis, A. Biswas, Appl. Math. Comput. 216, 2226 (2010) http://dx.doi.org/10.1016/j.amc.2010.03.056[Crossref]
  • [20] A. Biswas, A.H. Kara, Appl. Math. Comput. 217, 4289 (2010) http://dx.doi.org/10.1016/j.amc.2010.09.054[Crossref]
  • [21] R. Sakthivela, C. Chuna, A-R. Bae, Int. J. Comput. Math. 87, 2601 (2010) http://dx.doi.org/10.1080/00207160802691660[Crossref]
  • [22] M. Dehghan, M. Tatari, Numer. Meth. Part. D. E. 24, 924 (2008) http://dx.doi.org/10.1002/num.20297[Crossref]
  • [23] C. Chun, R. Sakthivel, Comput. Phys. Commun. 181, 1021 (2010) http://dx.doi.org/10.1016/j.cpc.2010.02.007[Crossref]
  • [24] M. Dehghan, A. Saadatmandi, Chaos Soliton. Fract. 41, 1448 (2009) http://dx.doi.org/10.1016/j.chaos.2008.06.009[Crossref]
  • [25] M. Dehghan, Numer. Meth. Part. D. E. 21, 24 (2005) http://dx.doi.org/10.1002/num.20019[Crossref]
  • [26] F. Shakeri, M. Dehghan, Comput. Math. Appl. 56, 2175 (2008) http://dx.doi.org/10.1016/j.camwa.2008.03.055[Crossref]
  • [27] W-T. Ang, Appl. Numer. Math. 56, 1054 (2006) http://dx.doi.org/10.1016/j.apnum.2005.09.006[Crossref]
  • [28] M. Tatari, M. Dehghan, Appl. Math. Model. 33, 1729 (2009) http://dx.doi.org/10.1016/j.apm.2008.03.006[Crossref]
  • [29] S. A. Khuri, A. Sayfy, Appl. Math. Comput. 218, 9187 (2012) http://dx.doi.org/10.1016/j.amc.2012.02.075[Crossref]
  • [30] S. A. Khuri, A. Sayfy, Appl. Math. Comput. 217, 3993 (2010) http://dx.doi.org/10.1016/j.amc.2010.10.005[Crossref]
  • [31] A. H. Bhrawy, A.S. Alofi, Commun. Nonlinear Sci. Numer. Simul. 17, 62 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.04.025[Crossref]
  • [32] S. A. Khuri, A. Sayfy, Appl. Math. Model. 38, 2901 (2014) http://dx.doi.org/10.1016/j.apm.2013.11.016[Crossref]
  • [33] E. H. Doha, A.H. Bhrawy, R.M. Hafez, Math. Comput. Model. 53, 1820 (2011) http://dx.doi.org/10.1016/j.mcm.2011.01.002[Crossref]
  • [34] D. Gottlieb, C.-W. Shu, SIAM Rev. 29, 644 (1997) http://dx.doi.org/10.1137/S0036144596301390[Crossref]
  • [35] D. Tchiotsop, D. Wolf, V. Louis-Dorr, R. Husson, Ecg data compression using Jacobi polynomials, in: Proceedings of the 29th Annual International Conference of the IEEE EMBS, 1863 (2007)
  • [36] E. H. Doha, A.H. Bhrawy, Numer. Meth. Part. D. E. 25, 712 (2009) http://dx.doi.org/10.1002/num.20369[Crossref]
  • [37] M. El-Kady, J. Korean Math. Soc. 49, 99 (2012) http://dx.doi.org/10.4134/JKMS.2012.49.1.099[Crossref]
  • [38] G. Szegö,, Colloquium Publications, XXIII, American Mathematical Society, ISBN 978-0-8218-1023-1, MR 0372517G (1939)
  • [39] E. H. Doha, A.H. Bhrawy, Comput. Math. Appl. 64, 558 (2012) http://dx.doi.org/10.1016/j.camwa.2011.12.050[Crossref]
  • [40] Y. Luke, The Special Functions and Their Approximations (Academic Press, New York, 1969)
  • [41] J. C. Butcher, The numerical analysis of ordinary differential equations, Runge-Kutta and general linear methods (Wiley, New York, 1987)
  • [42] E. H. Doha, Arab J. Math. 4, 31 (1983)
  • [43] B. S. Attili, K. Furati, M.I. Syam, Appl. Math. Comput. 178, 229 (2006) http://dx.doi.org/10.1016/j.amc.2005.11.044[Crossref]
  • [44] J. Cooper, J. Butcher, IMA J. Numer. Anal. 3, 127 (1983) http://dx.doi.org/10.1093/imanum/3.2.127[Crossref]
  • [45] B. Ehle, Z. Picel, Math. Comput. 29, 501 (1975) http://dx.doi.org/10.1090/S0025-5718-1975-0375737-7[Crossref]
  • [46] M. Serbin, Math. Comput. 35, 1231 (1980) http://dx.doi.org/10.1090/S0025-5718-1980-0583500-9[Crossref]
  • [47] M. Dehghan, A. Shokri, J. Comput. Appl. Math. 230, 400 (2009) http://dx.doi.org/10.1016/j.cam.2008.12.011[Crossref]
  • [48] S. M. El-Sayed, Chaos Soliton Fract. 18, 1025 (2003) http://dx.doi.org/10.1016/S0960-0779(02)00647-1[Crossref]
  • [49] E. Y. Deeba, S.A. Khuri, J. Comput. Phys. 124, 442 (1996) http://dx.doi.org/10.1006/jcph.1996.0071[Crossref]
  • [50] D. B. Duncan, SIAM J. Numer. Anal. 34, 1742 (1997) http://dx.doi.org/10.1137/S0036142993243106[Crossref]
  • [51] M. J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, New York, 1991) http://dx.doi.org/10.1017/CBO9780511623998[Crossref]
  • [52] J. Q. Mo, W.J. Zhang, M. He, Acta Phys. Sin. 56, 1847 (2007)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0493-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.