PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 7 | 503-510
Tytuł artykułu

Analytical approximate solutions to the Thomas-Fermi equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
7
Strony
503-510
Opis fizyczny
Daty
wydano
2014-07-01
online
2014-06-21
Twórcy
  • Department of Mathematics, Polytehnica University of Timişoara, Timişoara, 300006, Romania , remus.ene@upt.ro
Bibliografia
  • [1] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927) http://dx.doi.org/10.1017/S0305004100011683[Crossref]
  • [2] E. Fermi, Rend. Accad. del Lincei, Cl. Sci. Fis., Mat. e Nat. 6, 602 (1927)
  • [3] A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations (John Wiley and Sond, New York, 1979)
  • [4] Yu Mitropolski, The Average Method in Nonlinear Mechanics (Naukova Dumka, Kiev, 1971)
  • [5] V. P. Agrwal, N. N. Denman, J. Sound Vib. 99, 463 (1985) http://dx.doi.org/10.1016/0022-460X(85)90534-6[Crossref]
  • [6] J. I. Ramos, J. Sound Vib. 307, 312 (2007) http://dx.doi.org/10.1016/j.jsv.2007.07.011[Crossref]
  • [7] A. M. Wazwaz, Mathematics and Computation 105, 11 (1999) http://dx.doi.org/10.1016/S0096-3003(98)10090-5[Crossref]
  • [8] A. Cedillo, J. Math. Phys. 34, 2713 (1993) http://dx.doi.org/10.1063/1.530090[Crossref]
  • [9] B. L. Burrows, P. W. Core, Quant. Appl. Math. 42, 73 (1984)
  • [10] M. Oulne, arxiv: physics/0511017v2 [physics atomph]
  • [11] C. M. Bender, K. A. Milton, S. S. Pinky, L. M. Simmons jr., J. Math. Phys. 30, 1447 (1989) http://dx.doi.org/10.1063/1.528326[Crossref]
  • [12] S. J. Liao, Beyond Perturbation. Introduction to the Homotopy Analysis Method (Chapman and Hall/CRC Press, Boca Raton, 2003) http://dx.doi.org/10.1201/9780203491164[Crossref]
  • [13] H. K. Khan, H. Xu, Phys. Lett. A 365, 111 (2007) http://dx.doi.org/10.1016/j.physleta.2006.12.064[Crossref]
  • [14] S. Esposito, Am. J. Phys. 70, 852 (2002) http://dx.doi.org/10.1119/1.1484144[Crossref]
  • [15] S. Esposito, Int. J. Theor. Phys. 41, 2417 (2002) http://dx.doi.org/10.1023/A:1021398203046[Crossref]
  • [16] E. Di Grezia, S. Esposito, Found. Phys., 1431 (2004)
  • [17] S. Kobayashi, et al., J. Phys. Soc. Japan 10, 759 (1955) http://dx.doi.org/10.1143/JPSJ.10.759[Crossref]
  • [18] V. Marinca, N. Herisanu, I. Nemes, Cent. Eur. J. Phys. 6, 648 (2008) http://dx.doi.org/10.2478/s11534-008-0061-x[Crossref]
  • [19] V. Marinca, N. Herisanu, C. Bota, B. Marinca, Applied Mathematics Letters 22, 245 (2009) http://dx.doi.org/10.1016/j.aml.2008.03.019[Crossref]
  • [20] V. Marinca, N. Herisanu, Mathematical Problems in Engineering, Article ID 169056 (2011) [WoS]
  • [21] V. Marinca, N. Herisanu, Nonlinear Dynamical Systems in Engineering - Some Approximate Approaches (Springer Verlag, Heidelberg, 2011) http://dx.doi.org/10.1007/978-3-642-22735-6[Crossref]
  • [22] R.-D. Ene, V. Marinca, R. Negrea, B. Caruntu, In: A. Voronkov et al. (Ed.), 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Sep. 26–29, 2012, Timisoara, Romania (IEEE Computer Society, California 2012), 98
  • [23] V. Marinca, N. Herisanu, Scientific Research and Essays 8, 161 (2013)
  • [24] L. Elsgolts, Differential Equations and the Calculus of Variations (Mir Publishers, Moscow, 1980)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0472-9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.