Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 7 | 460-465
Tytuł artykułu

Darwin curves and galaxy arms

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the natural world, there exists one kind of structure which is beyond the scope of human laboratorial experiment. It is the structure of galaxies which is usually composed of billions of stars. Spiral galaxies are flat disk-shaped. There are two types of spiral galaxies. The spiral galaxies with some bar-shaped pattern are called barred spirals, and the ones without the pattern are called ordinary spirals. Longer-wavelength galaxy images (infrared, for example) show that ordinary spiral galaxies are basically an axi-symmetric disk that is called exponential disk. For a planar distribution of matter, Jin He defined Darwin curves in the plane as such that the ratio of the matter densities at both sides of the curve is constant along the curve. Therefore, the arms of ordinary spiral galaxies are Darwin curves. Now an important question is that: Are the arms of barred spiral galaxies the Darwin curves too? Fortunately, Jin He designed a piece of Galaxy Anatomy graphic software. With the software, not only can people simulate the stellar density distribution of barred spiral galaxies but also can draw the Darwin curves of the simulated galaxy structure. This paper shows partial evidence that the arms of galaxy NGC 3275, 4548 and 5921 follow Darwin curves.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
12
Numer
7
Strony
460-465
Opis fizyczny
Daty
wydano
2014-07-01
online
2014-06-21
Twórcy
autor
  • Wuhan FutureSpace Scientific Corporation Limited, Wuhan, Hubei, 430074, China, mathnob@yahoo.com
Bibliografia
  • [1] J. Binney, S. Tremaine, Galactic Dynamics, 1st edition (Princeton University Press, Princeton, 1987)
  • [2] F. Zwicky, Helvetica Physica Acta 6, 110 (1933)
  • [3] W. Julian, A. Toomre, ApJ 146, 810 (1966) http://dx.doi.org/10.1086/148957[Crossref]
  • [4] P. Goldreich, D. Lynden-Bell, MNRAS 130, 125 (1965)
  • [5] C. C. Lin, F. Shu, ApJ 140, 646 (1964) http://dx.doi.org/10.1086/147955[Crossref]
  • [6] E. D’Onghia, M. Vogelsberger, L. Hernquist, ApJ 766, 34 (2013) http://dx.doi.org/10.1088/0004-637X/766/1/34[Crossref]
  • [7] J. He, Ph.D. thesis, The University of Alabama (Tuscaloosa, USA, 2005)
  • [8] J. He, Elec. J. Theo. Phys. 24, 361 (2010)
  • [9] J. He, Astrophys. Space Sci. 283, 301 (2003) http://dx.doi.org/10.1023/A:1021337132572[Crossref]
  • [10] J. He, X. Yang, Astrophys. Space Sci. 302, 7 (2006) http://dx.doi.org/10.1007/s10509-006-2796-4[Crossref]
  • [11] J. He, Astrophys. Space Sci. 313, 373 (2008) http://dx.doi.org/10.1007/s10509-007-9707-1[Crossref]
  • [12] P. Eskridge et al., Astron. J. Suppl. 143, 73 (2002) http://dx.doi.org/10.1086/342340[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0470-y
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.