Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 5 | 367-374
Tytuł artykułu

EIT phenomenon for the three-level hydrogen atoms and its application to the era of cosmological recombination

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper evaluates the contribution of the electromagnetically induced transparency (EIT) phenomenon to the processes of the microwave background (CMB) formation in early universe. We found the additional function f to the integrated line absorption coefficient. This makes it the necessity to upgrade the Sobolev escape probability: p ij (τ S) → p ij (τ S · (1 + f)). We calculated the magnitude of the function f for different schemes of the hydrogen atom in the three-level approximation in terms of the field parameters. The electric field amplitudes are defined using the CMB distribution. We found that the contribution of f can be significant in some cases.
Wydawca

Czasopismo
Rocznik
Tom
12
Numer
5
Strony
367-374
Opis fizyczny
Daty
wydano
2014-05-01
online
2014-05-08
Twórcy
  • Department of Physics, St. Petersburg State University, St. Petersburg, 198504, Russia, solovyev.d@gmail.com
Bibliografia
  • [1] J. P. Marangos, T. Halfmann, In: M. Bass, G. Li, E.V. Stryland (Eds.), Electromagnetically Induced Transparency, Handbook of Optics, Third Edition, vol. IV, Optical Properties of Materials, Nonlinear Optics (Mc Graw Hill, New York, 2010) 14
  • [2] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Zh. Eksp. Teor. Fiz. 55, 278 (1968)
  • [3] Ya. B. Zel’dovich, V. G. Kurt, R. A. Syunyaev, Sov. Phys. JETP Lett. 28, 146 (1969)
  • [4] P. J. E. Peebles, Astrophys. J. 153, 1 (1968) http://dx.doi.org/10.1086/149628[Crossref]
  • [5] S. Seager, D. D. Sasselov, D. Scott, Astrophys. J. Suppl. Series 128, 407 (2000) http://dx.doi.org/10.1086/313388[Crossref]
  • [6] V. V. Sobolev, Sov. Astr.-AJ 1, 678 (1957)
  • [7] D. Solovyev, V. Dubrovich, G. Plunien, J. Phys. B: At. Mol. Opt. Phys. 45, 215001 (2012) http://dx.doi.org/10.1088/0953-4075/45/21/215001[Crossref]
  • [8] V. K. Dubrovich, S. I. Grachev, Astron. Lett. 31, 359 (2006) http://dx.doi.org/10.1134/1.1940107[Crossref]
  • [9] A. Lewis, J. Weller, R. Battye, Mon. Not. R. Astron. Soc. 373, 561 (2006) http://dx.doi.org/10.1111/j.1365-2966.2006.10983.x[Crossref]
  • [10] A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988) http://dx.doi.org/10.1103/PhysRevLett.61.826[Crossref]
  • [11] I. L. Glukhov, E. A. Nekipelov, V. D. Ovsiannikov, J. Phys. B: At. Mol. Opt. Phys. 43, 125002 (2010) http://dx.doi.org/10.1088/0953-4075/43/12/125002[Crossref]
  • [12] T. F. Gallagher, W. E. Cooke, Phys. Rev. Lett. 42, 835 (1979) http://dx.doi.org/10.1103/PhysRevLett.42.835[Crossref]
  • [13] J. Weiner, P.-T. Ho, Light-Matter Interaction: Fundamentals and Applications (John Wiley & Sons, Inc., Hoboken, New Jersey, 2003) http://dx.doi.org/10.1002/9783527617883[Crossref]
  • [14] R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, Orlando, 2008) [WoS]
  • [15] R. M. Whitley, R. Stroud, Phys. Rev. A 14, 1498 (1976) http://dx.doi.org/10.1103/PhysRevA.14.1498[Crossref]
  • [16] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao, Phys. Rev. A 51, 576 (1995) http://dx.doi.org/10.1103/PhysRevA.51.576[Crossref]
  • [17] S. Wielandy, A. L. Gaeta, Phys. Rev. A 58, 2500 (1998) http://dx.doi.org/10.1103/PhysRevA.58.2500[Crossref]
  • [18] J. Chluba, J. A. Rubino-Martin, R. A. Sunyaev, Mon. Not. R. Astron. Soc. 374, 1310 (2007) http://dx.doi.org/10.1111/j.1365-2966.2006.11239.x[Crossref]
  • [19] Y. Ali-Haïmoud, C. Hirata, Phys. Rev. D 82, 063521 (2010) http://dx.doi.org/10.1103/PhysRevD.82.063521[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-014-0452-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.