Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 12 | 4 | 274-285
Tytuł artykułu

Electro-osmotically actuated oscillatory flow of a physiological fluid on a porous microchannel subject to an external AC electric field having dissimilar frequencies

Treść / Zawartość
Warianty tytułu
Języki publikacji
Electro-osmotic flow of a physiological fluid with prominent micropolar characteristics, flowing over a microchannel has been analyzed for a situation, where the system is subject to the action of an external AC electric field. In order to account for the rotation of the micro-particles suspended in the physiological fluid, the fluid has been treated as a micropolar fluid. The microchannel is considered to be bounded by two porous plates executing oscillatory motion. Such motion of the plates will normally induce oscillatory flow of the fluid. The governing equations of the fluid include a second-order partial differential equation depicting Gauss’s law of electrical charge distributions and two other partial differential equations of second order that arise out of the laws of conservation of linear and angular momenta. These equations have been solved under the sole influence of electrokinetic forces, by using appropriate boundary conditions. This enabled us to determine explicit analytical expressions for the electro-osmotic velocity of the fluid and the microrotation of the suspended micro-particles. These expressions have been used to obtain numerical estimates of important physical variables associated with the oscillatory electro-osmotic flow of a blood sample inside a micro-bio-fluidic device. The numerical results presented in graphical form clearly indicate that the formation of an electrical double layer near the vicinity of the wall causes linear momentum to reduce. In contrast, the angular momentum increases with the enhancement of microrotation of the suspended microparticles. The study will find important applications in the validation of results of further experimental and numerical models pertaining to flow in micro-bio-fluidic devices. It will also be useful in the improvement of the design and construction of various micro-bio-fluidic devices.

Opis fizyczny
  • Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, India,
  • Department of Physics, Sabang S. K. Mahavidyalaya, Vidyasagar University, Midnapore, India
  • [1] V. Srinivasan, V. K. Pamula, R. B. Fair, Lab. Chip 4, 310 (2004)[Crossref]
  • [2] M. Gad-el-Hak, The MEMS, Handbook (CRC Press, Boca Raton, FL., 2002)
  • [3] H. A. Stone, A. D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)[Crossref]
  • [4] C. M. Ho, Y. C. Tai, Ann. Review. Fluid Mech. 30, 579 (1998)[Crossref]
  • [5] P. Gravesen, J. Branehjerg, O. S. Jensen, J. Micromech. Microeng. 3, 168 (1993)[Crossref]
  • [6] M. Murugan et. al., Int. J. Nucl. Desalination 2, 172 (2006)[Crossref]
  • [7] A. J. Chung, D. Run, D. Ericson, Lab. Chip 2, 330 (2008)[Crossref]
  • [8] P. Nithiarasu, P. F. Eng, A. K. Arnold, Proc. 5th European Thermal Sciences Conference, 18–22 May 2008, Eindhoven, The Netherlands
  • [9] J. G. Santiago, Anal. Chem. 73, 2352 (2001)[Crossref]
  • [10] E. J. W. Verwey, J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)
  • [11] D. Burgreen, F. R. Nakache, J. Phys. Chem. 68, 1084 (1964)[Crossref]
  • [12] C. L. Rice, R. Whitehead, J. Phys. Chem. 69, 4017 (1965)[Crossref]
  • [13] S. Levine, J. R. Marriott, G. Neale, N. Epstein, J. Colloid Interf. Sci. 52, 136 (1975)[Crossref]
  • [14] R. J. Yang, L. M. Fu and Y. C. Lin, J. Colloid Interf. Sci. 239, 98 (2001)[Crossref]
  • [15] H. M. Park, W. M. Lee, Lab. Chip 8, 1163 (2008)[Crossref]
  • [16] M. B. Akgul, M. Pakdemirli, Int. J. Nonlinear Mech. 43, 985 (2008)[Crossref]
  • [17] C. Zhao, E. Zholkovskij, J. H. Masliyah, C. Yang, J. Colloid Interf. Sci. 326, 503 (2008)[Crossref]
  • [18] J. C. Misra, S. Chakravarty, J. Biomech. 15, 317 (1982)[Crossref]
  • [19] J. C. Misra, S. Chakravarty, J. Biomech. 19, 907 (1986)[Crossref]
  • [20] J. C. Misra, M. K. Patra, S. C. Misra, J. Biomech. 26, 1129 (1993)[Crossref]
  • [21] J. C. Misra, G. C. Shit, J. Mech. Med. Biol. 7, 337 (2007)[Crossref]
  • [22] J. C. Misra, G. C. Shit, ASME J. Appl. Mech. 76, 061006 (2009)[Crossref]
  • [23] J. C. Misra, B. Pal, A. S. Gupta, Math. Mod. Meth. Appl. Sci. 8, 1323 (1998)[Crossref]
  • [24] J. C. Misra, B. Pal, A. Pal, A. S. Gupta, Int. J. Nonlinear Mech. 36, 731 (2001)[Crossref]
  • [25] J. C. Misra, G. C. Shit, H. J. Rath, Comput. Fluids 37, 1 (2008)[Crossref]
  • [26] J. C. Misra, A. Sinha, G. C. Shit, Appl. Math. Mech. 31, 1405 (2010)[Crossref]
  • [27] J. C. Misra, A. Sinha, G. C. Shit, J. Mech. Med. Biol. 11, 547 (2011)[Crossref]
  • [28] J. C. Misra, A. Sinha, G. C. Shit, Int. J. Biomath. 4, 207 (2011)[Crossref]
  • [29] J. C. Misra, S. K. Pandey, Comput. Math. Appl. 28, 131 (1994)[Crossref]
  • [30] J. C. Misra, S. K. Pandey, Math. Comput. Model. 22, 137 (1995)[Crossref]
  • [31] J. C. Misra, S. K. Pandey, Int. J. Eng. Sci. 37, 1841 (1999)[Crossref]
  • [32] J. C. Misra, S. K. Pandey, Math. Comput. Model. 33, 997 (2001)[Crossref]
  • [33] J. C. Misra, S. K. Pandey, Int. J. Eng. Sci. 39, 387 (2001)[Crossref]
  • [34] J. C. Misra, S. K. Pandey, Comput. Math. Appl. 43, 1183 (2002)[Crossref]
  • [35] J. C. Misra, S. K. Pandey, In: J. C. Misra (Ed.), Int. Biomathematics: Modelling and Simulation (World Scientific Publishing Company, London, USA, Singapore, 2006) 167
  • [36] S. Maiti, J. C. Misra, Int. J. Eng. Sci. 49, 950 (2011)[Crossref]
  • [37] J. C. Misra, S. Maiti, G. C. Shit, J. Mech. Med. Biol. 8, 507 (2008)[Crossref]
  • [38] J. C. Misra, G. C. Shit, S. Chandra, P. K. Kundu, Appl. Math. Comput. 217, 7932 (2011)[Crossref]
  • [39] J. C. Misra, S. K. Ghosh, Comput. Math. Appl. 41, 783 (2001)[Crossref]
  • [40] J. C. Misra, S. Chandra, G. C. Shit, P. K. Kundu, J. Mech. Med. Biol. 13, 1350013 (2013)[Crossref]
  • [41] A. C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)[Crossref]
  • [42] A. C. Eringen, J. Math. Mech. 16, 1 (1966)
  • [43] T. Ariman, M. A. Turk, N. D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973)[Crossref]
  • [44] T. Ariman, M. A. Turk, N. D. Sylvester, ASME J. Appl. Mech. 41, 1 (1974)[Crossref]
  • [45] A. A. Siddiqui, A. Lakhtakia, Proc. R. Soc. A, 465, 501 (2009)[Crossref]
  • [46] A. A. Siddiqui, A. Lakhtakia, J. Phys. A: Math. Theor. 42, 35 (2009)[Crossref]
  • [47] G. Ahmadi, Int. J. Eng. Sci. 14, 639 (1976)[Crossref]
  • [48] D. Li, Electrokinetics in Microfluidics, 2 (Elsevier, London, 2004)
  • [49] R. F. Probestein, Physicochemical Hydrodynamics: An introduction, Second Edn (Butterworths, Boston, 1989)
  • [50] C. P. Chin, H. M. Chou, Acta Mech. 101, 161 (1993)[Crossref]
  • [51] D. A. Rees, A. P. Bassom, Int. J. Eng. Sci. 34, 113 (1996)[Crossref]
  • [52] H. E. Hegab, G. Liu, Proc. SPIE 4177, 257 (2004)[Crossref]
  • [53] S. Chandra, Ph. D. Dissertation, Jadavpur University (Kolkata, India, 2012)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.