PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 1 | 63-69
Tytuł artykułu

Complex lag synchronization of two identical chaotic complex nonlinear systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Much progress has been made in the research of synchronization for chaotic real or complex nonlinear systems. In this paper we introduce a new type of synchronization which can be studied only for chaotic complex nonlinear systems. This type of synchronization may be called complex lag synchronization (CLS). A definition of CLS is introduced and investigated for two identical chaotic complex nonlinear systems. Based on Lyapunov function a scheme is designed to achieve CLS of chaotic attractors of these systems. The effectiveness of the obtained results is illustrated by a simulation example. Numerical results are plotted to show state variables, modulus errors and phase errors of these chaotic attractors after synchronization to prove that CLS is achieved.
Wydawca

Czasopismo
Rocznik
Tom
12
Numer
1
Strony
63-69
Opis fizyczny
Daty
wydano
2014-01-01
online
2014-02-02
Twórcy
  • Department of Mathematics, Umm Al-Qura University, P.O. Box 14949, Makkah, Kingdom of Saudi Arabia, kmaboualnaja@uqu.edu.sa
Bibliografia
  • [1] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [2] M. Lakshmanan, K. Murali, Chaos in nonlinear oscillators: controlling and synchronization (World Scientific, Singapore, 1996)
  • [3] S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3190[Crossref]
  • [4] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/20676[Crossref]
  • [5] T. Yang, L. O. Chua, IEEE T. Circuits Syst. I 43, 817 (1996) http://dx.doi.org/10.1109/81.536758[Crossref]
  • [6] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou, Phys. Reports 366, 1 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00137-0[Crossref]
  • [7] A. C. J. Luo, Commun. Nonlinear Sci. Numer. Simulat. 14, 1901 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.07.002[Crossref]
  • [8] R. Femat, G. Solis-Perales, Phys. Lett. A 262, 50 (1997) http://dx.doi.org/10.1016/S0375-9601(99)00667-2[Crossref]
  • [9] A.C. Fowler, J.D. Gibbon, M.J. McGuinness, Physica D 4, 139 (1982) http://dx.doi.org/10.1016/0167-2789(82)90057-4[Crossref]
  • [10] G.M. Mahmoud, M.A. Al-Kashif, S.A. Aly, Int. J. Mod. Phys. C 18, 253 (2007) http://dx.doi.org/10.1142/S0129183107010425[Crossref]
  • [11] G.M. Mahmoud, T. Bountis, E.E. Mahmoud, Int. J. Bifurcat. Chaos 17, 4295 (2007) http://dx.doi.org/10.1142/S0218127407019962[Crossref]
  • [12] G.M. Mahmoud, T. Bountis, G.M. AbdEl-Latif, E.E. Mahmoud, Nonlinear Dyn. 55, 43 (2009) http://dx.doi.org/10.1007/s11071-008-9343-5[Crossref]
  • [13] E.E Mahmoud, Mathematical and Computer Modelling 55, 1951 (2012) http://dx.doi.org/10.1016/j.mcm.2011.11.053[Crossref]
  • [14] G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 67, 1613 (2012) http://dx.doi.org/10.1007/s11071-011-0091-6[Crossref]
  • [15] E.E Mahmoud, J. Franklin Inst. 349, 1247 (2012) http://dx.doi.org/10.1016/j.jfranklin.2012.01.010[Crossref]
  • [16] E.E. Mahmoud, Appl. Math. Inf. Sci. 7, 1429 (2013) http://dx.doi.org/10.12785/amis/070422[Crossref]
  • [17] G.M. Mahmoud, E.E. Mahmoud, Int. J. Bifurcat. Chaos 21, 2369 (2011) http://dx.doi.org/10.1142/S0218127411029859[Crossref]
  • [18] E.E. Mahmoud, Mathematics and Computers in Simulation 89, 69 (2013) http://dx.doi.org/10.1016/j.matcom.2013.02.008[Crossref]
  • [19] G.M. Mahmoud, E.E. Mahmoud, Mathematics and Computers in Simulation 80, 2286 (2010) http://dx.doi.org/10.1016/j.matcom.2010.03.012[Crossref]
  • [20] F. Nian, X. Wang, Y. Niu, D. Lin, Applied Mathematics and Computation 217, 2481 (2010) http://dx.doi.org/10.1016/j.amc.2010.07.059[Crossref]
  • [21] Z. Wu, J. Duan, X. Fu, Nonlinear Dyn. 69, 711–719 (2012)
  • [22] E.E. Mahmoud, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.2793 [Crossref]
  • [23] G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 73, 2231 (2013) http://dx.doi.org/10.1007/s11071-013-0937-1[Crossref]
  • [24] M. Hu, Y. Yang, Z. Xu, L. Guo, Mathematics and Computers in Simulation 79, 449 (2008) http://dx.doi.org/10.1016/j.matcom.2008.01.047[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0324-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.