PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1255-1261
Tytuł artykułu

Diffusion problems on fractional nonlocal media

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the nonlocal diffusion in one-dimensional continua is investigated by means of a fractional calculus approach. The problem is set on finite spatial domains and it is faced numerically by means of fractional finite differences, both for what concerns the transient and the steady-state regimes. Nonlinear deviations from classical solutions are observed. Furthermore, it is shown that fractional operators possess a clear physical-mechanical meaning, representing conductors, whose conductance decays as a power-law of the distance, connecting non-adjacent points of the body.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1255-1261
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
  • Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy , alberto.sapora@polito.it
  • Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy , pietro.cornetti@polito.it
  • Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy , alberto.carpinteri@polito.it
Bibliografia
  • [1] A. C. Eringen, D.G.B Edelen, Int. J. Eng. Sci. 10, 233 (1972) http://dx.doi.org/10.1016/0020-7225(72)90039-0[Crossref]
  • [2] M. Lazar, G. A. Maugin, E. C. Aifantis. Int. J. Sol. Struct. 43, 1404 (2006) http://dx.doi.org/10.1016/j.ijsolstr.2005.04.027[Crossref]
  • [3] M. Di Paola, M. Zingales, Int. J. Sol. Struct. 45, 5642 (2008) http://dx.doi.org/10.1016/j.ijsolstr.2008.06.004[Crossref]
  • [4] A. Carpinteri, P. Cornetti, A. Sapora, Eur. Phys. J. Special Topics. 193, 193 (2011) http://dx.doi.org/10.1140/epjst/e2011-01391-5[Crossref]
  • [5] V. E. Tarasov, G.M. Zaslavsky, Commun. Nonlinear Sci. Numer. Simul. 11, 885 (2006) http://dx.doi.org/10.1016/j.cnsns.2006.03.005[Crossref]
  • [6] T. Gorenflo, F. Mainardi, J. Comput. Appl. Math. 229, 400 (2009) http://dx.doi.org/10.1016/j.cam.2008.04.005[Crossref]
  • [7] T. M. Atanackovic, B. Stankovic, Acta Mech. 208, 1 (2009) http://dx.doi.org/10.1007/s00707-008-0120-9[Crossref]
  • [8] T. M. Michelitsch, G.A. Maugin, M. Rahman, S. Derogar, A.F. Nowakowski, F.C.G.A. Nicolleau, J. Appl. Math. 23, 709 (2012)
  • [9] A. Sapora, P. Cornetti, A. Carpinteri, Commun. Nonlinear Sci. Numer. Simulat. 18, 63 (2013) http://dx.doi.org/10.1016/j.cnsns.2012.06.017[Crossref]
  • [10] N. Challamel, D. Zoricab, T.M. Atanackovic, D. T. Spasic, C. R. Mecanique 341, 298 (2013) http://dx.doi.org/10.1016/j.crme.2012.11.013[Crossref]
  • [11] A. Carpinteri, P. Cornetti, A. Sapora, M. Di Paola, M. Zingales in Proceedings of the XIX Italian Conference on Theoretical and Applied Mechanics, Ancona, Italy, 2009 Ed. S. Lenci (Aras Edizioni, Fano/Italy, 2009), p.315.
  • [12] M. Bogoya, C. A. Gómez, Nonlinear Analysis. 75, 3198 (2012) http://dx.doi.org/10.1016/j.na.2011.12.019[Crossref]
  • [13] A. Zoia, A. Rosso, M. Kardar, Phys. Rev. E. 76, 021116 (2007) http://dx.doi.org/10.1103/PhysRevE.76.021116[Crossref]
  • [14] R. Metzler, T.F. Nonnenmacher, Chem. Phys. 284, 67 (2002) http://dx.doi.org/10.1016/S0301-0104(02)00537-2[Crossref]
  • [15] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Chem. Phys. 284, 521 (2002) http://dx.doi.org/10.1016/S0301-0104(02)00714-0[Crossref]
  • [16] R. Gorenflo, F. Mainardi, Journal of Computational and Applied Mathematics 229, 400 (2009) http://dx.doi.org/10.1016/j.cam.2008.04.005[Crossref]
  • [17] P. A. Alemany, Chaos Soliton. Fract. 6, 7 (1995) http://dx.doi.org/10.1016/0960-0779(95)80003-Y[Crossref]
  • [18] F. Mainardi, Chaos Soliton. Fract. 7, 1461 (1996) http://dx.doi.org/10.1016/0960-0779(95)00125-5[Crossref]
  • [19] Q. Zeng, H. Li, and D. Liu, Commun. Nonlinear Sci. Numer. Simul. 4, 99 (1999) http://dx.doi.org/10.1016/S1007-5704(99)90019-9[Crossref]
  • [20] F. Mainardi, Y. Luchko, G. Pagnini, Fractional Calculus Appl. Anal. 4, 153 (2001)
  • [21] R. L. Magin, O. Abdullah, D. Baleanu, X. J. Zhou, J. Magn. Reson. 190, 255 (2008) http://dx.doi.org/10.1016/j.jmr.2007.11.007[Crossref]
  • [22] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Computers and Mathematics with Applications 61, 1355 (2011) http://dx.doi.org/10.1016/j.camwa.2010.12.079[Crossref]
  • [23] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Int. J. Bifurcat. Chaos 22, 1250071 (2012) http://dx.doi.org/10.1142/S021812741250071X[Crossref]
  • [24] E. K. Lenzi, L. R. Evangelista and G. Barbero, J. Phys. Chem. B 113, 11371 (2009) http://dx.doi.org/10.1021/jp904741m[Crossref]
  • [25] J. R. Macdonald, L. R. Evangelista, E. K. Lenzi, and G. Barbero, J. Phys. Chem. C 115, 7648 (2011) http://dx.doi.org/10.1021/jp200737z[Crossref]
  • [26] O. P. Agrawal, J. Phys. A. 40, 6287 (2007) http://dx.doi.org/10.1088/1751-8113/40/24/003[Crossref]
  • [27] A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, Wien, 1997)
  • [28] A. Carpinteri, P. Cornetti, A. Sapora, Z. Angew. Math. Mech. 89, 207 (2009) http://dx.doi.org/10.1002/zamm.200800115[Crossref]
  • [29] A. Carpinteri, A. Sapora, Z. Angew. Math. Mech. 90, 203 (2010) http://dx.doi.org/10.1002/zamm.200900376[Crossref]
  • [30] I. Podlubny, Fractional Differential Equations (New York, Academic Press, 1999)
  • [31] M. M. Meerschaert, H. P. Scheffler, C. Tadjeran. J. Comput. Phys. 211, 249 (2006) http://dx.doi.org/10.1016/j.jcp.2005.05.017[Crossref]
  • [32] M. D. Ortigueira, J. Vib. Control. 14, 1255 (2008) http://dx.doi.org/10.1177/1077546307087453[Crossref]
  • [33] Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200 (2010) http://dx.doi.org/10.1016/j.apm.2009.04.006[Crossref]
  • [34] K. B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)
  • [35] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).
  • [36] S. G. Samko, A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Gordon and Breach Science Publisher, Amsterdam, 1993)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0323-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.