Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Within the framework of fractional calculus with variable order the evolution of space in the adiabatic limit is investigated. Based on the Caputo definition of a fractional derivative using the fractional quantum harmonic oscillator a model is presented, which describes space generation as a dynamic process, where the dimension d of space evolves smoothly with time in the range 0 ≤ d(t) ≤ 3, where the lower and upper boundaries of dimension are derived from first principles. It is demonstrated, that a minimum threshold for the space dimension is necessary to establish an interaction with external probe particles. A possible application in cosmology is suggested.
Czasopismo
Rocznik
Tom
Numer
Strony
1212-1220
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
autor
- GigaHedron, Berliner Ring 80, D-63303, Dreieich, Germany, herrmann@gigahedron.de
Bibliografia
- [1] K. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, (Wiley, New York, 1993)
- [2] S. G. Samko, B. Ross, Integr. Transf. Spec. F. 1, 277 (1993) http://dx.doi.org/10.1080/10652469308819027[Crossref]
- [3] I. Podlubny, Fractional differential equations, (Academic Press, New York, 1999)
- [4] R. Hilfer, Applications of fractional calculus in physics, (World Scientific Publ., Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
- [5] R. Herrmann, Fractional calculus - An introduction for physicists, (World Scientific Publ., Singapore, 2011) http://dx.doi.org/10.1142/8072[Crossref]
- [6] G. F. Leibniz, Correspondence with l’Hospital manuscript (1695)
- [7] C. Darwin, On the origin of species by means of natural selection, (John Murray, London, 1859)
- [8] L. E. S. Ramirez, C. F. M. Coimbra, Int. J. Differential Equations 2010, 846107 (2010)
- [9] T. Odzijewicz, A. B. Malinkowska, D. F. M. Torres, Operator Theory: Advances and Applications 229 291–301, (Birkhäuser Science, Springer, Berlin, Heidelberg, New York, 2013)
- [10] T. Odzijewicz, A. B. Malinkowska, D. F. M. Torres, arXiv:1304.5282 [math.OC] (2013)
- [11] O. von Guericke, Nova (ut vocantur) Magdeburgica de vacuo spatio, (J. Janssonius, Waesberge, Amsterdam, 1672)
- [12] Th. Kaluza, Zum Unitätsproblem der Physik Sitzungsberichte der Preussischen Akademie der Wissenschaften Physikalisch-mathematischer Klasse (1921) 966
- [13] O. Klein, Z. Phys. 37, 895 (1926) http://dx.doi.org/10.1007/BF01397481[Crossref]
- [14] É. Cartan, Comptes Rendus Acad. Sci. 174, 593 (1922)
- [15] T. W. B. Kibble, J. Math. Phys. 2, 212 (1961) http://dx.doi.org/10.1063/1.1703702[Crossref]
- [16] A. Lasenby, C. Doran, S. Gull, Phil. Trans. R. Soc. Lond. A 356, 487 (1998) http://dx.doi.org/10.1098/rsta.1998.0178[Crossref]
- [17] M. Jamil, D. Momeni, R. Myrzakulov, Eur. Phys. J. C D 72, 1959 (2012) http://dx.doi.org/10.1140/epjc/s10052-012-1959-4[Crossref]
- [18] M. E. Rodriguez, M. J. S. Houndjo, D. Morneni, R. Myrzakulov, Int. J. Mod. Phys. D 22, 1350043 (2013) http://dx.doi.org/10.1142/S0218271813500430[Crossref]
- [19] K. Karami, M. Jamil, S. Ghaffari, K. Fahimi, R. Myrzakulov, Can. J. Phys. 91, 770 (2013) http://dx.doi.org/10.1139/cjp-2013-0293[Crossref]
- [20] F. R. Tangherlini, Nuovo Cimento 27, 636 (1963) http://dx.doi.org/10.1007/BF02784569[Crossref]
- [21] X. F. He, Phys. Rev. B 42 11751 (1990) http://dx.doi.org/10.1103/PhysRevB.42.11751[Crossref]
- [22] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, Phys. Lett. B 288, 23 (1992) http://dx.doi.org/10.1016/0370-2693(92)91949-A[Crossref]
- [23] G. Calcagni, J. High Energy Phys. 2012, 65 (2012) http://dx.doi.org/10.1007/JHEP01(2012)065[Crossref]
- [24] Z. Merali, Nature 500, 516 (2013) http://dx.doi.org/10.1038/500516a[Crossref]
- [25] P. Ehrenfest, Proc. Amsterdam Acad. 20 I, 200 (1917) reprinted in M. J. Klein (Ed.), (North Holland Publ. Co., Amsterdam, 1959)
- [26] M. D. Roberts, arXiv:0909.1171 (2009) [WoS]
- [27] R. A. El-Nabulsi, Fizika B 19, 103 (2010)
- [28] U. Debnath, M. Jamil, S. Chattopadhya, Int. J. Theor. Phys. 51, 812 (2012) http://dx.doi.org/10.1007/s10773-011-0961-1[Crossref]
- [29] S. Chakraborty, U. Debnath, M. Jamil, Can. J. Phys. 90, 365 (2012) http://dx.doi.org/10.1139/p2012-027[Crossref]
- [30] R. A. El-Nabulsi, Indian J. Phys. 87(2), 195 (2013) http://dx.doi.org/10.1007/s12648-012-0201-4[Crossref]
- [31] U. Debnath, S. Chattopadhya, M. Jamil, Journal of Theoretical and Applied Physics 7, 25 (2013) http://dx.doi.org/10.1186/2251-7235-7-25[Crossref]
- [32] R. Herrmann, Int. J. Mod. Phys. B 27, 1350019 (2013) http://dx.doi.org/10.1142/S0217979213500197[Crossref]
- [33] M. Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967) http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x[Crossref]
- [34] V. E. Tarasov, Int. J. Math. 18, 281 (2007) http://dx.doi.org/10.1142/S0129167X07004102[Crossref]
- [35] R. Herrmann, Physica A 389, 4613 (2010) http://dx.doi.org/10.1016/j.physa.2010.07.004[Crossref]
- [36] R. Herrmann, Gam. Ori. Chron. Phys. 1, 13 (2013)
- [37] N. Laskin, Phys. Rev. E 66, 056108 (2002) http://dx.doi.org/10.1103/PhysRevE.66.056108[Crossref]
- [38] P. A. M. Dirac, Scientific American 208, 47 (1963) http://dx.doi.org/10.1038/scientificamerican0563-45[Crossref]
- [39] A. G. Riess et al., Astron. J. 116, 1009 (1998) http://dx.doi.org/10.1086/300499[Crossref]
- [40] F. Zwicky, Helv. Phys. Acta 6, 110 (1933), republication: Gen. Relat. Grav. 41, 207 (2009)
- [41] V. C. Rubin, W. K. Jr. Ford, N. Thonnard, M. S. Roberts, J. A. Graham, Astron. J. 81, 687 (1976) http://dx.doi.org/10.1086/111942[Crossref]
- [42] V. C. Rubin, N. Thonnard, W. K. Ford, M. S. Roberts, Astron. J. 81, 718 (1976)
- [43] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, (Dover Publications, New York, 1965)
- [44] M. M. Colless et al., (the 2dFGRS team), Mon. Not. R. Astron. Soc. 328, 1039 (2001) http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
- [45] M. Jamil, A. R. Muneer, D. Momeni, O. Razina, K. Esmakhanova, J. Phys.: Conf. Ser. 354, 012008 (2012)
- [46] B. Riemann, (1847) Versuch einer allgemeinen Auffassung der Integration und Differentiation in: H. Weber, R. Dedekind (Eds.) (1892) Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass, Teubner, Leipzig, reprinted in Collected works of Bernhard Riemann, Dover Publications, 353 (1953)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0315-0