PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 11 | 1580-1588
Tytuł artykułu

Lattice model with power-law spatial dispersion for fractional elasticity

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A lattice model with a spatial dispersion corresponding to a power-law type is suggested. This model serves as a microscopic model for elastic continuum with power-law non-locality. We prove that the continuous limit maps of the equations for the lattice with the power-law spatial dispersion into the continuum equations with fractional generalizations of the Laplacian operators. The suggested continuum equations, which are obtained from the lattice model, are fractional generalizations of the integral and gradient elasticity models. These equations of fractional elasticity are solved for two special static cases: fractional integral elasticity and fractional gradient elasticity.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
11
Strony
1580-1588
Opis fizyczny
Daty
wydano
2013-11-01
online
2013-12-10
Twórcy
Bibliografia
  • [1] B. Ross, Lect. Notes Math. 457, 1 (1975) http://dx.doi.org/10.1007/BFb0067096[Crossref]
  • [2] J. T. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Num. Simul. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [3] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and Derivatives of Fractional Order and Applications (Nauka i Tehnika, Minsk, 1987)
  • [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications (Gordon and Breach, New York, 1993)
  • [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [6] A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics (Springer, New York, 1997)
  • [7] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
  • [8] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [9] J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado (Eds.), Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering (Springer, Dordrecht, 2007)
  • [10] A. C. J. Luo, V. S. Afraimovich (Eds.), Long-range Interaction, Stochasticity and Fractional Dynamics (Springer, Berlin, 2010)
  • [11] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World Scientific, Singapore, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [12] J. Klafter, S. C. Lim, R. Metzler (Eds.), Fractional Dynamics, Recent Advances (World Scientific, Singapore, 2011)
  • [13] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)
  • [14] J. A. Tenreiro Machado, Commun. Nonlinear Sci. Num. Simul. 16, 4596 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.019[Crossref]
  • [15] V. E. Tarasov, Int. J. Mod. Phys. B. 27, 1330005 (2013) http://dx.doi.org/10.1142/S0217979213300053[Crossref]
  • [16] K. A. Lazopoulos, Mech. Res. Commun. 33, 753 (2006) http://dx.doi.org/10.1016/j.mechrescom.2006.05.001[Crossref]
  • [17] A. Carpinteri, P. Cornetti, A. Sapora, App. Math. Mech. 89, 207 (2009)
  • [18] A. Carpinteri, P. Cornetti, A. Sapora, Eur. Phys. J. Special Topics 193, 193 (2011) http://dx.doi.org/10.1140/epjst/e2011-01391-5[Crossref]
  • [19] A. Sapora, P. Cornetti, A. Carpinteri, Commun. Nonlinear Sci. Num. Simul. 18, 63 (2013) http://dx.doi.org/10.1016/j.cnsns.2012.06.017[Crossref]
  • [20] G. Cottone, M. Di Paola, M. Zingales, Physica E. 42, 95 (2009) http://dx.doi.org/10.1016/j.physe.2009.09.006[Crossref]
  • [21] G. Cottone, M. Di Paola, M. Zingales, Adv. Num. Method. Lect. Notes El. Eng. 11, 389 (2009) http://dx.doi.org/10.1007/978-0-387-76483-2_33[Crossref]
  • [22] I. A. Kunin, Media with Microstructure, Vol. I (Springer-Verlag, Berlin, New York, 1982) http://dx.doi.org/10.1007/978-3-642-81748-9[Crossref]
  • [23] I. A. Kunin, Media with Microstructure, Vol.II (Springer-Verlag, Berlin, New York, 1983) http://dx.doi.org/10.1007/978-3-642-81960-5[Crossref]
  • [24] J. A. Krumhansl, In R. F. Wallis (Ed.), Generalized continuum field representation for lattice vibrations, Lattice Dynamics (Pergamon, London, 1965) 627–634
  • [25] A. C. Eringen, B. S. Kim, Crystal Latt. Def. 7, 51 (1977)
  • [26] M. Ostoja-Starzewski, App. Mech. Rev. 55, 35 (2002) http://dx.doi.org/10.1115/1.1432990[Crossref]
  • [27] H. Askes, A. Metrikine, Int. J. Soli. Struct. 42, 187 (2005) http://dx.doi.org/10.1016/j.ijsolstr.2004.04.005[Crossref]
  • [28] M. Charlotte, L. Truskinovsky, J. Mech. Phys. Solids. 60, 1508 (2012) http://dx.doi.org/10.1016/j.jmps.2012.03.004[Crossref]
  • [29] V. E. Tarasov, J. Phys. A. 39, 14895 (2006) http://dx.doi.org/10.1088/0305-4470/39/48/005[Crossref]
  • [30] V. E. Tarasov, J. Math. Phys. 47, 092901 (2006) http://dx.doi.org/10.1063/1.2337852[Crossref]
  • [31] V. E. Tarasov, G. M. Zaslavsky, Chaos. 16, 023110 (2006) http://dx.doi.org/10.1063/1.2197167[Crossref]
  • [32] N. Laskin, G. M. Zaslavsky, Physica A. 368, 38 (2006) http://dx.doi.org/10.1016/j.physa.2006.02.027[Crossref]
  • [33] V. E. Tarasov, G. M. Zaslavsky, Commun. Nonlinear Sci. Num. Simul. 11, 885 (2006) http://dx.doi.org/10.1016/j.cnsns.2006.03.005[Crossref]
  • [34] V. E. Tarasov, J. J. Trujillo, Ann. Phys. 334, 1 (2013) http://dx.doi.org/10.1016/j.aop.2013.03.014[Crossref]
  • [35] G. H. Hardy, J. London Math. Soc. 20, 45 (1945)
  • [36] M. M. Dzherbashyan, A. B. Nersesian, Izv. An. Armyanskoi SSR. Fiz.-Mat. 11, 85 (1958) (in Russian)
  • [37] M. M. Dzherbashyan, A. B. Nersesian, Dokl. Akad. Nauk. 121, 210 (1958) (in Russian)
  • [38] J. J. Trujillo, M. Rivero, B. Bonilla, J. Math. Anal. App. 231, 255 (1999) http://dx.doi.org/10.1006/jmaa.1998.6224[Crossref]
  • [39] Z. M. Odibat, N. T. Shawagfeh, App. Math. Comput. 186, 286 (2007) http://dx.doi.org/10.1016/j.amc.2006.07.102[Crossref]
  • [40] M. Di Paola, M. Zingales, Int. J. Solid. Struct. 45, 5642 (2008) http://dx.doi.org/10.1016/j.ijsolstr.2008.06.004[Crossref]
  • [41] H. Askes, E. C. Aifantis, Int. J. Solid. Struct. 48, 1962 (2011) http://dx.doi.org/10.1016/j.ijsolstr.2011.03.006[Crossref]
  • [42] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Third Edition (Pergamon Press, Oxford, 1986)
  • [43] H. Bateman, A. Erdelyi, Tables of integral transforms, Volume 1 (New York, McGraw-Hill, 1954) or (Moscow, Nauka, 1969) in Russian
  • [44] A. K. Jonscher, Nature 267, 673 (1977) http://dx.doi.org/10.1038/267673a0[Crossref]
  • [45] A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics, London, 1996)
  • [46] A. K. Jonscher, J. Mat. Sci. 34, 3071 (1999) http://dx.doi.org/10.1023/A:1004640730525[Crossref]
  • [47] V. E. Tarasov, J. Phys. Condensed Matter. 20, 175223 (2008) http://dx.doi.org/10.1088/0953-8984/20/17/175223[Crossref]
  • [48] V. E. Tarasov, Jo. Phys. Condensed Matter. 20, 145212 (2008) http://dx.doi.org/10.1088/0953-8984/20/14/145212[Crossref]
  • [49] V. E. Tarasov, Cent. Eur. J. Phys. 10, 382 (2012) http://dx.doi.org/10.2478/s11534-012-0008-0[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0308-z
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.