PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 8 | 984-994
Tytuł artykułu

Conservation laws and associated Lie point symmetries admitted by the transient heat conduction problem for heat transfer in straight fins

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
8
Strony
984-994
Opis fizyczny
Daty
wydano
2013-08-01
online
2013-10-23
Twórcy
  • Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, Johannesburg, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa , Luyanda.Ndlovu@standardbank.co.za
  • Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, Johannesburg, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa , raseelo.moitsheki@wits.ac.za
Bibliografia
  • [1] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conference in Applied Math., SIAM, 1973 http://dx.doi.org/10.1137/1.9781611970562[Crossref]
  • [2] R.J. LeVeque, Numerical Methods for Conservation Laws, Second edition (Springer, 1992) http://dx.doi.org/10.1007/978-3-0348-8629-1[Crossref]
  • [3] B. Cockburn, S. Hou, C.-W Shu. Math. Comput. 54, 545 (1990)
  • [4] R. Naz, F.M. Mahomed, D.P. Mason, Appl. Math. Comput. 205, 212 (2008) http://dx.doi.org/10.1016/j.amc.2008.06.042[Crossref]
  • [5] E. Noether, Transport Theor. Stat. Phys. 1, 183 (1971) http://dx.doi.org/10.1080/00411457108231445[Crossref]
  • [6] A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer (Wiley, New York, 2001)
  • [7] A.H. Bokhari, A.H. Kara, F.D. Zaman, Appl. Math. Lett. 19, 1356 (2006) http://dx.doi.org/10.1016/j.aml.2006.02.003[Crossref]
  • [8] M. Pakdemirli, A.Z. Sahin, Int. J. Eng. Sci. 42, 1875 (2004) http://dx.doi.org/10.1016/j.ijengsci.2004.04.005[Crossref]
  • [9] M. Pakdemirli, A.Z. Sahin, Appl. Math. Lett. 19, 378 (2006) http://dx.doi.org/10.1016/j.aml.2005.04.017[Crossref]
  • [10] O.O. Vaneeva, A.G. Johnpillai, R.O. Popovych, C. Sophocleous, Appl. Math. Lett. 21, 248 (2008) http://dx.doi.org/10.1016/j.aml.2007.02.023[Crossref]
  • [11] R.O. Popovych, C. Sophocleous, O.O. Vaneeva, Appl. Math. Lett. 21, 209 (2008) http://dx.doi.org/10.1016/j.aml.2007.03.009[Crossref]
  • [12] A. Moradi, Int. J. Eng. Appl. Sci. 3, 1 (2011) http://dx.doi.org/10.1504/IJSE.2011.037717[Crossref]
  • [13] R.J. Moitsheki, T. Hayat, M.Y. Malik, Nonlinear Anal. Real 11, 3287 (2010) http://dx.doi.org/10.1016/j.nonrwa.2009.11.021[Crossref]
  • [14] M.H. Chowdhury, I. Hashim, On decomposition solutions of fins with temperature dependent surface heat flux: multi-boiling heat transfer, IMT-GT (University of Sains Malaysia, Penang, 2006)
  • [15] S.C. Anco, G.W. Bluman, Eur. J. Appl. Math. 13, 545 (2002)
  • [16] S.C. Anco, G.W. Bluman, Eur. J. Appl. Math. 13, 567 (2002)
  • [17] G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of symmetry methods to partial differential equations (Springer-Verlag, New York, 2010) http://dx.doi.org/10.1007/978-0-387-68028-6[Crossref]
  • [18] D.Q. Kern, A.D. Kraus, Extended Surface Heat Transfer (McGraw-Hill, New York, 1972)
  • [19] H.C. Ünal, Int. J. Heat Mass Trans. 31, 1483 (1988) http://dx.doi.org/10.1016/0017-9310(88)90257-8[Crossref]
  • [20] S. Vitanov, V. Palankovski, S. Maroldt, R. Quay, Solid State Electronin. 54, 1105 (2010) http://dx.doi.org/10.1016/j.sse.2010.05.026[Crossref]
  • [21] A. Jezowski, B.A. Danilchenko, M. Bockowski, I. Grzegory, S. Krukowski, T. Suski, T. Paszkiewicz, Solid State Commun. 128, 69 (2003) http://dx.doi.org/10.1016/S0038-1098(03)00629-X[Crossref]
  • [22] M.D. Kamatagi, N.S. Sankeshwar, B.G. Mulimani, Diam. Relat. Mater. 16, 98 (2007) http://dx.doi.org/10.1016/j.diamond.2006.04.004[Crossref]
  • [23] M.D. Kamatagi, R.G. Vaidya, N.S. Sankeshwar, B.G. Mulimani, Int. J. Heat Mass Trans. 52, 2885 (2009) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.032[Crossref]
  • [24] M.D. Mhlongo, R.J. Moitsheki, O.D. Makinde, Int. J. Heat Mass Trans. 57, 117 (2013) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.012[Crossref]
  • [25] A.F. Mills, basic heat and mass transfer (Prentice Hall, 1999)
  • [26] A.H. Kara, F.M. Mahomed, Int. J. Theor. Phys. 39, 23 (2000) http://dx.doi.org/10.1023/A:1003686831523[Crossref]
  • [27] A.H. Kara, F.M. Mahomed, J. Nonlinear Math. Phy. 9, 60 (2002) http://dx.doi.org/10.2991/jnmp.2002.9.s2.6[Crossref]
  • [28] O.O. Vaneeva, A.G. Johnpillai, R.O. Popovych, C. Sophocleous, J. Math. Anal. Appl. 330, 1363 (2007) http://dx.doi.org/10.1016/j.jmaa.2006.08.056[Crossref]
  • [29] R.O. Popovych, M. Ivanova, J. Math. Phys. 46, 043502 (2005) http://dx.doi.org/10.1063/1.1865813[Crossref]
  • [30] N.M. Ivanova, R.O. Popovych, C. Sophocleous, O.O. Vaneeva, Physica A. 388 343 (2009) http://dx.doi.org/10.1016/j.physa.2008.10.018[Crossref]
  • [31] G.W. Bluman, S.C. Anco, Symmetry and integration methods for differential equations (Springer-Verlag, New York, 2002)
  • [32] G.W. Bluman, S. Kumei, Symmetries and differential equations (Springer-Verlag, New York, 1989) http://dx.doi.org/10.1007/978-1-4757-4307-4[Crossref]
  • [33] P.J. Olver, Applications of Lie groups of differential equations (Springer-Verlag, New York, 1986) http://dx.doi.org/10.1007/978-1-4684-0274-2[Crossref]
  • [34] A.V. Dorondnitsyn, USSR Comput. Math. Math. Phys. 22, 115 (1982) http://dx.doi.org/10.1016/0041-5553(82)90102-1[Crossref]
  • [35] N.H. Ibragimov (Editor), Lie group analysis of differential equations - symmetries, exact solutions and conservation laws, Volume 1, Boca raton, FL, Chemical Rubber Company, 1994
  • [36] A. Sjöberg, Nonlinear Anal. Real 10, 3472 (2009) http://dx.doi.org/10.1016/j.nonrwa.2008.09.029[Crossref]
  • [37] A.H. Bokhari, A.Y. Dweik, F.D. Zaman, A.H. Kara, F.M. Mahomed, Nonlinear Anal. Real 11, 3763 (2010) http://dx.doi.org/10.1016/j.nonrwa.2010.02.006[Crossref]
  • [38] J.G. Kingston, C. Sophocleous, J. Phys. A. Math. Gen. 31, 1597 (1998) http://dx.doi.org/10.1088/0305-4470/31/6/010[Crossref]
  • [39] R.O. Popovych, A.M. Samoilenko, J. Phys. A. 41, 362002 (2008) http://dx.doi.org/10.1088/1751-8113/41/36/362002[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0306-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.