Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We present a class of confining potentials which allow one to reduce the one-dimensional Schrödinger equation to a named equation of mathematical physics, namely either Bessel’s or Whittaker’s differential equation. In all cases, we provide closed form expressions for both the symmetric and antisymmetric wavefunction solutions, each along with an associated transcendental equation for allowed eigenvalues. The class of potentials considered contains an example of both cusp-like single wells and a double-well.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
977-983
Opis fizyczny
Daty
wydano
2013-08-01
online
2013-10-23
Twórcy
autor
- School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK, c.a.downing@exeter.ac.uk
Bibliografia
- [1] E. Schrödinger, Ann. Phys. (Leipzig) 79, 361 (1926) http://dx.doi.org/10.1002/andp.19263840404[Crossref]
- [2] P. M. Morse, Phys. Rev. 34, 57 (1929) http://dx.doi.org/10.1103/PhysRev.34.57[Crossref]
- [3] C. Eckart, Phys. Rev. 35, 1303 (1930) http://dx.doi.org/10.1103/PhysRev.35.1303[Crossref]
- [4] N. Rosen, P. M. Morse, Phys. Rev. 42, 210 (1932) http://dx.doi.org/10.1103/PhysRev.42.210[Crossref]
- [5] G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933) http://dx.doi.org/10.1007/BF01331132[Crossref]
- [6] A list of exact solutions from the genesis of quantum mechanics is given in M. F. Manning, Phys. Rev. 48, 161 (1935) http://dx.doi.org/10.1103/PhysRev.48.161[Crossref]
- [7] F. Scarf, Phys. Rev. 112, 1137 (1958) http://dx.doi.org/10.1103/PhysRev.112.1137[Crossref]
- [8] R. Loudon, Am. J. Phys. 27, 649 (1959) http://dx.doi.org/10.1119/1.1934950[Crossref]
- [9] R. R. Whitehead, A. Watt, G. P. Flessas, M. A. Nagarajan, J. Phys. A: Math. Gen. 15, 1217 (1982) http://dx.doi.org/10.1088/0305-4470/15/4/024[Crossref]
- [10] D. Pertsch J. Phys. A: Math. Gen. 23, 4145 (1990) http://dx.doi.org/10.1088/0305-4470/23/18/020[Crossref]
- [11] C. M. Bender, Q. Wang, J. Phys. A: Math. Gen. 34 9835 (2001) http://dx.doi.org/10.1088/0305-4470/34/46/307[Crossref]
- [12] D. G. W. Parfitt, M. E. Portnoi, J. Math. Phys. 43, 4681 (2002) http://dx.doi.org/10.1063/1.1503868[Crossref]
- [13] For a comprehensive list of exact solutions please see V. G. Bagrov, D. M. Gitman, Exact Solutions of Relativistic Wave Equations (Kluwer, Dordrecht, 1990) http://dx.doi.org/10.1007/978-94-009-1854-2[Crossref]
- [14] L. Infeld, T. E. Hull, Rev. Mod. Phys. 23, 21 (1951) http://dx.doi.org/10.1103/RevModPhys.23.21[Crossref]
- [15] F. Cooper, A. Khare, U. P. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001) http://dx.doi.org/10.1142/4687[Crossref]
- [16] A. Gangopadhyaya, J. V. Mallow and C. Rasinariu, Supersymmetric Quantum Mechanics (World Scientific, Singapore, 2011), and references therein
- [17] A. V. Turbiner, Sov. Phys. JETP 67, 230 (1988)
- [18] A. Turbiner, Commun. Math. Phys. 118, 467 (1988) http://dx.doi.org/10.1007/BF01466727[Crossref]
- [19] A. G. Ushveridze, Quasi-exactly Solvable Models in Quantum Mechanics (Institute of Physics, Bristol, 1994)
- [20] C. M. Bender, S. Boettcher, J. Phys. A 31, L273 (1998) http://dx.doi.org/10.1088/0305-4470/31/14/001[Crossref]
- [21] C. A. Downing, J. Math. Phys. 54, 072101 (2013) http://dx.doi.org/10.1063/1.4811855[Crossref]
- [22] R. R. Hartmann, arXiv:1306.2836 (2013) [WoS]
- [23] M. J. Gillan, J. Phys. C: Solid State Phys. 20 3621 (1987) http://dx.doi.org/10.1088/0022-3719/20/24/005[Crossref]
- [24] Z. I. Alferov, Rev. Mod. Phys. 73, 767 (2001) http://dx.doi.org/10.1103/RevModPhys.73.767[Crossref]
- [25] P. Budau, M. Grigorescu, Phys. Rev. B 57, 6313 (1998) http://dx.doi.org/10.1103/PhysRevB.57.6313[Crossref]
- [26] R. W. Spekkens, J. E. Sipe, Phys. Rev. A 59, 3868 (1999) http://dx.doi.org/10.1103/PhysRevA.59.3868[Crossref]
- [27] S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985) http://dx.doi.org/10.1017/CBO9780511565045[Crossref]
- [28] K. Heun Math. Ann. 33, 161 (1889) http://dx.doi.org/10.1007/BF01443849[Crossref]
- [29] A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1995)
- [30] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)
- [31] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0301-6