PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 10 | 1178-1193
Tytuł artykułu

Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study a class of new Generalized Fractional Advection-Diffusion Equations (GFADEs) with a new Generalized Fractional Derivative (GFD) proposed last year. The new GFD is defined in the Caputo sense using a weight function and a scale function. The GFADE is discussed in a bounded domain, and numerical solutions for two examples consisting of a linear and a nonlinear GFADE are obtained using an implicit finite difference approach. The stability of the numerical scheme is investigated, and the order of convergence is estimated numerically. Numerical results illustrate that the finite difference scheme is simple and effective for solving the GFADEs. We investigate the influence of weight and scale functions on the diffusion of GFADEs. Linear and nonlinear stretching and contracting functions are considered. It is found that an increasing weight function increases the rate of diffusion, and a scale function can stretch or contract the diffusion on the time domain.
Wydawca

Czasopismo
Rocznik
Tom
11
Numer
10
Strony
1178-1193
Opis fizyczny
Daty
wydano
2013-10-01
online
2013-12-19
Twórcy
autor
  • Department of Applied Mathematics, School of Mathematics and Statistics, Central South University, Changsha, 410083, Hunan, People’s Republic of China, xuyufeng@csu.edu.cn
autor
  • Mechanical Engineering and Energy Processes, Southern Illinois University, Carbondale, Illinois, 62901, USA, om@engr.siu.edu
Bibliografia
  • [1] W. Beinum, J. Meeussen, A. Edwards, W. Riemsdijk, Water Res. 34, 2043 (2000) http://dx.doi.org/10.1016/S0043-1354(99)00371-1[Crossref]
  • [2] T. L. Bocksell, E. Loth, Int. J. Multiphas. Flow 32, 1234 (2006) http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.05.013[Crossref]
  • [3] J. Ferreira, M. Costa, J. Hydraul. Eng. 128, 399 (2002) http://dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:4(399)[Crossref]
  • [4] N. Kumar, J. Hydrol. 63, 345 (1988) http://dx.doi.org/10.1016/0022-1694(83)90050-1[Crossref]
  • [5] C. Pirmez, L. F. Pratson, M. S. Steckler, J. Geophys. Res. 103, 141 (1998)
  • [6] A. Rasmuson, T. N. Narasimhan, I. Neretnieks, Water Resour. Res. 18, 1479 (1982) http://dx.doi.org/10.1029/WR018i005p01479[Crossref]
  • [7] P. C. Chatwin, C. M. Allen, Ann. Rev. Fluid Mech. 17, 119 (1985) http://dx.doi.org/10.1146/annurev.fl.17.010185.001003[Crossref]
  • [8] A. Kiselev, L. Ryzhik, Commun. Part. Diff. Eq. 37, 298 (2012) http://dx.doi.org/10.1080/03605302.2011.589879[Crossref]
  • [9] X. F. Chen, R. Hambrock, Y. Lou, J. Math. Bio. 57, 361 (2008) http://dx.doi.org/10.1007/s00285-008-0166-2[Crossref]
  • [10] V. Gafiychuk, B. Datsko, V. Meleshko, J. Comput. Appl. Math. 220, 215 (2008) http://dx.doi.org/10.1016/j.cam.2007.08.011[Crossref]
  • [11] V. Gafiychuk, B. Datsko, V. Meleshko, D. Bkackmore, Chaos, Solitons, Fractals 41, 1905 (2009) http://dx.doi.org/10.1016/j.chaos.2008.07.044[Crossref]
  • [12] E. Sousa, J. Comput. Phy. 228, 4038 (2009) http://dx.doi.org/10.1016/j.jcp.2009.02.011[Crossref]
  • [13] U. M. Ascher, Numerical Methods for Evolutionary Differential Equations, (SIAM Computational Science and Engineering, USA, 2008) http://dx.doi.org/10.1137/1.9780898718911[Crossref][WoS]
  • [14] W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, (Springer, Berlin, 2003) http://dx.doi.org/10.1007/978-3-662-09017-6[Crossref]
  • [15] Y. Xu, Z. He, Comput. Math. Appl. 62, 4796 (2011) http://dx.doi.org/10.1016/j.camwa.2011.10.071[Crossref]
  • [16] M. M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004) http://dx.doi.org/10.1016/j.cam.2004.01.033[Crossref]
  • [17] S. Dhawan, S. Kapoor, S. Kumar, J. Comput. Sci. 3, 429 (2012) http://dx.doi.org/10.1016/j.jocs.2012.06.006[Crossref]
  • [18] M. Danesh, M. Safari, Advance. Pure Math. 1, 345 (2011) http://dx.doi.org/10.4236/apm.2011.16062[Crossref]
  • [19] X. L. Ding, Y. L. Jiang, Nonlinear Anal. RWA. 14, 1026 (2013) http://dx.doi.org/10.1016/j.nonrwa.2012.08.014[Crossref]
  • [20] B. W. Philippa, R. D. White, R. E. Robson, Phys. Rev. E. 84, 041138–1 (2011) http://dx.doi.org/10.1103/PhysRevE.84.041138[Crossref]
  • [21] Y. Y. Zheng, C. P. Li, Z. G. Zhao, Comput. Math. Appl. 59, 1718 (2010) http://dx.doi.org/10.1016/j.camwa.2009.08.071[Crossref]
  • [22] K. Diethelm, The Analysis of Fractional Differential Equations, (Springer-Verlag, Berlin Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Elsevier Science B. V., Amsterdam, 2006)
  • [24] I. Podlubny, Fractional Differential Equations, (Academic Press, San Diego, 1999)
  • [25] O.P. Agrawal, Fract. Calc. Anal. Appl. 15, 700 (2012)
  • [26] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comput. 191, 12 (2007) http://dx.doi.org/10.1016/j.amc.2006.08.162[Crossref]
  • [27] F. Huang, F. Liu, ANZIAM J. 46, 317 (2005) http://dx.doi.org/10.1017/S1446181100008282[Crossref]
  • [28] H. Jiang, F. Liu, I. Turner, K. Burrage, J. Math. Anal. Appl. 389, 1117 (2012) http://dx.doi.org/10.1016/j.jmaa.2011.12.055[Crossref]
  • [29] Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200 (2010) http://dx.doi.org/10.1016/j.apm.2009.04.006[Crossref]
  • [30] O.P. Agrawal, Int. J. Diff. Equa. 2012, 1 (2012)
  • [31] Y. Xu, O.P. Agrawal, Fract. Calc. Appl. Anal. 16, 709 (2013)
  • [32] A. Mohebbi, M. Dehghan, Appl. Math. Modelling, 34, 3071 (2010) http://dx.doi.org/10.1016/j.apm.2010.01.013[Crossref]
  • [33] F. Prieto, J. Muñoz, L. Corvinos, J. Comput. Appl. Math. 235, 1849 (2011) http://dx.doi.org/10.1016/j.cam.2010.05.026[Crossref]
  • [34] A. Hidalgo, M. Dumbser, J. Sci. Comput. 48, 173 (2011) http://dx.doi.org/10.1007/s10915-010-9426-6[Crossref]
  • [35] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0295-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.